ترغب بنشر مسار تعليمي؟ اضغط هنا

False vacuum decay in quantum spin chains

106   0   0.0 ( 0 )
 نشر من قبل Federica Maria Surace
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The false vacuum decay has been a central theme in physics for half a century with applications to cosmology and to the theory of fundamental interactions. This fascinating phenomenon is even more intriguing when combined with the confinement of elementary particles. Due to the astronomical time scales involved, the research has so far focused on theoretical aspects of this decay. The purpose of this Letter is to show that the false vacuum decay is accessible to current optical experiments as quantum analog simulators of spin chains with confinement of the elementary excitations, which mimic the high energy phenomenology but in one spatial dimension. We study the non-equilibrium dynamics of the false vacuum in a quantum Ising chain and in an XXZ ladder. The false vacuum is the metastable state that arises in the ferromagnetic phase of the model when the symmetry is explicitly broken by a longitudinal field. This state decays through the formation of bubbles of true vacuum. Using iTEBD simulations, we are able to study the real-time evolution in the thermodynamic limit and measure the decay rate of local observables. We find that the numerical results agree with the theoretical prediction that the decay rate is exponentially small in the inverse of the longitudinal field.



قيم البحث

اقرأ أيضاً

We show that a wide class of spin chains with topological frustration cannot develop any local order. In particular, we consider translational-invariant one-dimensional chains with frustrated boundary conditions, i.e. periodic boundary conditions and an odd number of sites, which possess a global SU(2) symmetry. This condition implies, even at a finite sizes, an exact degeneracy of the ground state and is quite general in absence of external fields. We directly evaluate the expectation value of operators with support over a finite range of lattice sites and show that, except for some precise conditions, they all decay algebraically, or faster, with the chain length and vanish in the thermodynamic limit. The exceptions that admit a finite order are cases with a higher ground state degeneracy in which the translational symmetry is broken by the ground state choice.
We study the real-time dynamics of a small bubble of false vacuum in a quantum spin chain near criticality, where the low-energy physics is described by a relativistic (1+1)-dimensional quantum field theory. Such a bubble can be thought of as a confi ned kink-antikink pair (a meson). We carefully construct bubbles so that particle production does not occur until the walls collide. To achieve this in the presence of strong correlations, we extend a Matrix Product State (MPS) ansatz for quasiparticle wavepackets [Van Damme et al., arXiv:1907.02474 (2019)] to the case of confined, topological quasiparticles. By choosing the wavepacket width and the bubble size appropriately, we avoid strong lattice effects and observe relativistic kink-antikink collisions. We use the MPS quasiparticle ansatz to detect scattering outcomes: In the Ising model, with transverse and longitudinal fields, we do not observe particle production despite nonintegrability (supporting recent observations of nonthermalizing mesonic states). With additional interactions, we see production of confined and unconfined particle pairs. Although we simulated these low-energy, few-particle events with moderate resources, we observe significant growth of entanglement with energy and with the number of collisions, suggesting that increasing either will ultimately exhaust our methods. Quantum devices, in contrast, are not limited by entanglement production, and promise to allow us to go far beyond classical methods. We anticipate that kink-antikink scattering in 1+1 dimensions will be an instructive benchmark problem for relatively near-term quantum devices.
Finite-temperature spin transport in the quantum Heisenberg spin chain is known to be superdiffusive, and has been conjectured to lie in the Kardar-Parisi-Zhang (KPZ) universality class. Using a kinetic theory of transport, we compute the KPZ couplin g strength for the Heisenberg chain as a function of temperature, directly from microscopics; the results agree well with density-matrix renormalization group simulations. We establish a rigorous quantum-classical correspondence between the giant quasiparticles that govern superdiffusion and solitons in the classical continuous Landau-Lifshitz ferromagnet. We conclude that KPZ universality has the same origin in classical and quantum integrable isotropic magnets: a finite-temperature gas of low-energy classical solitons.
We consider the decay of the false vacuum, realised within a quantum quench into an anti-confining regime of the Ising spin chain with a magnetic field opposite to the initial magnetisation. Although the effective linear potential between the domain walls is repulsive, the time evolution of correlations still shows a suppression of the light cone and a reduction of vacuum decay. The suppressed decay is a lattice effect, and can be assigned to emergent Bloch oscillations.
The existence or absence of non-analytic cusps in the Loschmidt-echo return rate is traditionally employed to distinguish between a regular dynamical phase (regular cusps) and a trivial phase (no cusps) in quantum spin chains after a global quench. H owever, numerical evidence in a recent study [J. C. Halimeh and V. Zauner-Stauber, arXiv:1610.02019] suggests that instead of the trivial phase a distinct anomalous dynamical phase characterized by a novel type of non-analytic cusps occurs in the one-dimensional transverse-field Ising model when interactions are sufficiently long-range. Using an analytic semiclassical approach and exact diagonalization, we show that this anomalous phase also arises in the fully-connected case of infinite-range interactions, and we discuss its defining signature. Our results show that the transition from the regular to the anomalous dynamical phase coincides with Z2-symmetry breaking in the infinite-time limit, thereby showing a connection between two different concepts of dynamical criticality. Our work further expands the dynamical phase diagram of long-range interacting quantum spin chains, and can be tested experimentally in ion-trap setups and ultracold atoms in optical cavities, where interactions are inherently long-range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا