ﻻ يوجد ملخص باللغة العربية
The existence or absence of non-analytic cusps in the Loschmidt-echo return rate is traditionally employed to distinguish between a regular dynamical phase (regular cusps) and a trivial phase (no cusps) in quantum spin chains after a global quench. However, numerical evidence in a recent study [J. C. Halimeh and V. Zauner-Stauber, arXiv:1610.02019] suggests that instead of the trivial phase a distinct anomalous dynamical phase characterized by a novel type of non-analytic cusps occurs in the one-dimensional transverse-field Ising model when interactions are sufficiently long-range. Using an analytic semiclassical approach and exact diagonalization, we show that this anomalous phase also arises in the fully-connected case of infinite-range interactions, and we discuss its defining signature. Our results show that the transition from the regular to the anomalous dynamical phase coincides with Z2-symmetry breaking in the infinite-time limit, thereby showing a connection between two different concepts of dynamical criticality. Our work further expands the dynamical phase diagram of long-range interacting quantum spin chains, and can be tested experimentally in ion-trap setups and ultracold atoms in optical cavities, where interactions are inherently long-range.
Using an infinite Matrix Product State (iMPS) technique based on the time-dependent variational principle (TDVP), we study two major types of dynamical phase transitions (DPT) in the one-dimensional transverse-field Ising model (TFIM) with long-range
Using the framework of infinite Matrix Product States, the existence of an textit{anomalous} dynamical phase for the transverse-field Ising chain with sufficiently long-range interactions was first reported in [J.~C.~Halimeh and V.~Zauner-Stauber, ar
We study the quasiparticle excitation and quench dynamics of the one-dimensional transverse-field Ising model with power-law ($1/r^{alpha}$) interactions. We find that long-range interactions give rise to a confining potential, which couples pairs of
While there are well established methods to study delocalization transitions of single particles in random systems, it remains a challenging problem how to characterize many body delocalization transitions. Here, we use a generalized real-space renor
The study of critical properties of systems with long-range interactions has attracted in the last decades a continuing interest and motivated the development of several analytical and numerical techniques, in particular in connection with spin model