ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization Multimodal Connectivity of Brain Network by Hypergraph GAN for Alzheimers Disease Analysis

219   0   0.0 ( 0 )
 نشر من قبل Shuqiang Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Using multimodal neuroimaging data to characterize brain network is currently an advanced technique for Alzheimers disease(AD) Analysis. Over recent years the neuroimaging community has made tremendous progress in the study of resting-state functional magnetic resonance imaging (rs-fMRI) derived from blood-oxygen-level-dependent (BOLD) signals and Diffusion Tensor Imaging (DTI) derived from white matter fiber tractography. However, Due to the heterogeneity and complexity between BOLD signals and fiber tractography, Most existing multimodal data fusion algorithms can not sufficiently take advantage of the complementary information between rs-fMRI and DTI. To overcome this problem, a novel Hypergraph Generative Adversarial Networks(HGGAN) is proposed in this paper, which utilizes Interactive Hyperedge Neurons module (IHEN) and Optimal Hypergraph Homomorphism algorithm(OHGH) to generate multimodal connectivity of Brain Network from rs-fMRI combination with DTI. To evaluate the performance of this model, We use publicly available data from the ADNI database to demonstrate that the proposed model not only can identify discriminative brain regions of AD but also can effectively improve classification performance.



قيم البحث

اقرأ أيضاً

Multimodal neuroimage can provide complementary information about the dementia, but small size of complete multimodal data limits the ability in representation learning. Moreover, the data distribution inconsistency from different modalities may lead to ineffective fusion, which fails to sufficiently explore the intra-modal and inter-modal interactions and compromises the disease diagnosis performance. To solve these problems, we proposed a novel multimodal representation learning and adversarial hypergraph fusion (MRL-AHF) framework for Alzheimers disease diagnosis using complete trimodal images. First, adversarial strategy and pre-trained model are incorporated into the MRL to extract latent representations from multimodal data. Then two hypergraphs are constructed from the latent representations and the adversarial network based on graph convolution is employed to narrow the distribution difference of hyperedge features. Finally, the hyperedge-invariant features are fused for disease prediction by hyperedge convolution. Experiments on the public Alzheimers Disease Neuroimaging Initiative(ADNI) database demonstrate that our model achieves superior performance on Alzheimers disease detection compared with other related models and provides a possible way to understand the underlying mechanisms of disorders progression by analyzing the abnormal brain connections.
66 - Xingwei An , Yutao Zhou , Yang Di 2020
Alzheimers disease (AD) is the most prevalent form of dementia. Traditional methods cannot achieve efficient and accurate diagnosis of AD. In this paper, we introduce a novel method based on dynamic functional connectivity (dFC) that can effectively capture changes in the brain. We compare and combine four different types of features including amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), dFC and the adjacency matrix of different brain structures between subjects. We use graph convolution network (GCN) which consider the similarity of brain structure between patients to solve the classification problem of non-Euclidean domains. The proposed methods accuracy and the area under the receiver operating characteristic curve achieved 91.3% and 98.4%. This result demonstrated that our proposed method can be used for detecting AD.
In this paper, we propose MGNet, a simple and effective multiplex graph convolutional network (GCN) model for multimodal brain network analysis. The proposed method integrates tensor representation into the multiplex GCN model to extract the latent s tructures of a set of multimodal brain networks, which allows an intuitive grasping of the common space for multimodal data. Multimodal representations are then generated with multiplex GCNs to capture specific graph structures. We conduct classification task on two challenging real-world datasets (HIV and Bipolar disorder), and the proposed MGNet demonstrates state-of-the-art performance compared to competitive benchmark methods. Apart from objective evaluations, this study may bear special significance upon network theory to the understanding of human connectome in different modalities. The code is available at https://github.com/ZhaomingKong/MGNets.
In recent years, many papers have reported state-of-the-art performance on Alzheimers Disease classification with MRI scans from the Alzheimers Disease Neuroimaging Initiative (ADNI) dataset using convolutional neural networks. However, we discover t hat when we split that data into training and testing sets at the subject level, we are not able to obtain similar performance, bringing the validity of many of the previous studies into question. Furthermore, we point out that previous works use different subsets of the ADNI data, making comparison across similar works tricky. In this study, we present the results of three splitting methods, discuss the motivations behind their validity, and report our results using all of the available subjects.
Alzheimers Disease (AD) is one of the most concerned neurodegenerative diseases. In the last decade, studies on AD diagnosis attached great significance to artificial intelligence (AI)-based diagnostic algorithms. Among the diverse modality imaging d ata, T1-weighted MRI and 18F-FDGPET are widely researched for this task. In this paper, we propose a novel convolutional neural network (CNN) to fuse the multi-modality information including T1-MRI and FDG-PDT images around the hippocampal area for the diagnosis of AD. Different from the traditional machine learning algorithms, this method does not require manually extracted features, and utilizes the stateof-art 3D image-processing CNNs to learn features for the diagnosis and prognosis of AD. To validate the performance of the proposed network, we trained the classifier with paired T1-MRI and FDG-PET images using the ADNI datasets, including 731 Normal (NL) subjects, 647 AD subjects, 441 stable MCI (sMCI) subjects and 326 progressive MCI (pMCI) subjects. We obtained the maximal accuracies of 90.10% for NL/AD task, 87.46% for NL/pMCI task, and 76.90% for sMCI/pMCI task. The proposed framework yields comparative results against state-of-the-art approaches. Moreover, the experimental results have demonstrated that (1) segmentation is not a prerequisite by using CNN, (2) the hippocampal area provides enough information to give a reference to AD diagnosis. Keywords: Alzheimers Disease, Multi-modality, Image Classification, CNN, Deep Learning, Hippocampal
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا