ﻻ يوجد ملخص باللغة العربية
Using multimodal neuroimaging data to characterize brain network is currently an advanced technique for Alzheimers disease(AD) Analysis. Over recent years the neuroimaging community has made tremendous progress in the study of resting-state functional magnetic resonance imaging (rs-fMRI) derived from blood-oxygen-level-dependent (BOLD) signals and Diffusion Tensor Imaging (DTI) derived from white matter fiber tractography. However, Due to the heterogeneity and complexity between BOLD signals and fiber tractography, Most existing multimodal data fusion algorithms can not sufficiently take advantage of the complementary information between rs-fMRI and DTI. To overcome this problem, a novel Hypergraph Generative Adversarial Networks(HGGAN) is proposed in this paper, which utilizes Interactive Hyperedge Neurons module (IHEN) and Optimal Hypergraph Homomorphism algorithm(OHGH) to generate multimodal connectivity of Brain Network from rs-fMRI combination with DTI. To evaluate the performance of this model, We use publicly available data from the ADNI database to demonstrate that the proposed model not only can identify discriminative brain regions of AD but also can effectively improve classification performance.
Multimodal neuroimage can provide complementary information about the dementia, but small size of complete multimodal data limits the ability in representation learning. Moreover, the data distribution inconsistency from different modalities may lead
Alzheimers disease (AD) is the most prevalent form of dementia. Traditional methods cannot achieve efficient and accurate diagnosis of AD. In this paper, we introduce a novel method based on dynamic functional connectivity (dFC) that can effectively
In this paper, we propose MGNet, a simple and effective multiplex graph convolutional network (GCN) model for multimodal brain network analysis. The proposed method integrates tensor representation into the multiplex GCN model to extract the latent s
In recent years, many papers have reported state-of-the-art performance on Alzheimers Disease classification with MRI scans from the Alzheimers Disease Neuroimaging Initiative (ADNI) dataset using convolutional neural networks. However, we discover t
Alzheimers Disease (AD) is one of the most concerned neurodegenerative diseases. In the last decade, studies on AD diagnosis attached great significance to artificial intelligence (AI)-based diagnostic algorithms. Among the diverse modality imaging d