ﻻ يوجد ملخص باللغة العربية
Multimodal neuroimage can provide complementary information about the dementia, but small size of complete multimodal data limits the ability in representation learning. Moreover, the data distribution inconsistency from different modalities may lead to ineffective fusion, which fails to sufficiently explore the intra-modal and inter-modal interactions and compromises the disease diagnosis performance. To solve these problems, we proposed a novel multimodal representation learning and adversarial hypergraph fusion (MRL-AHF) framework for Alzheimers disease diagnosis using complete trimodal images. First, adversarial strategy and pre-trained model are incorporated into the MRL to extract latent representations from multimodal data. Then two hypergraphs are constructed from the latent representations and the adversarial network based on graph convolution is employed to narrow the distribution difference of hyperedge features. Finally, the hyperedge-invariant features are fused for disease prediction by hyperedge convolution. Experiments on the public Alzheimers Disease Neuroimaging Initiative(ADNI) database demonstrate that our model achieves superior performance on Alzheimers disease detection compared with other related models and provides a possible way to understand the underlying mechanisms of disorders progression by analyzing the abnormal brain connections.
Using multimodal neuroimaging data to characterize brain network is currently an advanced technique for Alzheimers disease(AD) Analysis. Over recent years the neuroimaging community has made tremendous progress in the study of resting-state functiona
Alzheimers disease (AD) is known as one of the major causes of dementia and is characterized by slow progression over several years, with no treatments or available medicines. In this regard, there have been efforts to identify the risk of developing
Uncovering the heterogeneity in the disease progression of Alzheimers is a key factor to disease understanding and treatment development, so that interventions can be tailored to target the subgroups that will benefit most from the treatment, which i
Identifying persuasive speakers in an adversarial environment is a critical task. In a national election, politicians would like to have persuasive speakers campaign on their behalf. When a company faces adverse publicity, they would like to engage p
We model Alzheimers disease (AD) progression by combining differential equations (DEs) and reinforcement learning (RL) with domain knowledge. DEs provide relationships between some, but not all, factors relevant to AD. We assume that the missing rela