ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterizing Bipartite Consensus on Signed Matrix-Weighted Networks via Balancing Set

314   0   0.0 ( 0 )
 نشر من قبل Haibin Shao
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In contrast with the scalar-weighted networks, where bipartite consensus can be achieved if and only if the underlying signed network is structurally balanced, the structural balance property is no longer a graph-theoretic equivalence to the bipartite consensus in the case of signed matrix-weighted networks. To re-establish the relationship between the network structure and the bipartite consensus solution, the non-trivial balancing set is introduced which is a set of edges whose sign negation can transform a structurally imbalanced network into a structurally balanced one and the weight matrices associated with edges in this set have a non-trivial intersection of null spaces. We show that necessary and/or sufficient conditions for bipartite consensus on matrix-weighted networks can be characterized by the uniqueness of the non-trivial balancing set, while the contribution of the associated non-trivial intersection of null spaces to the steady-state of the matrix-weighted network is examined. Moreover, for matrix-weighted networks with a positive-negative spanning tree, necessary and sufficient condition for bipartite consensus using the non-trivial balancing set is obtained. Simulation examples are provided to demonstrate the theoretical results.

قيم البحث

اقرأ أيضاً

We study the distributed average consensus problem in multi-agent systems with directed communication links that are subject to quantized information flow. The goal of distributed average consensus is for the nodes, each associated with some initial value, to obtain the average (or some value close to the average) of these initial values. In this paper, we present and analyze novel distributed averaging algorithms which operate exclusively on quantized values (specifically, the information stored, processed and exchanged between neighboring agents is subject to deterministic uniform quantization) and rely on event-driven updates (e.g., to reduce energy consumption, communication bandwidth, network congestion, and/or processor usage). We characterize the properties of the proposed distributed averaging protocols on quantized values and show that their execution, on any time-invariant and strongly connected digraph, will allow all agents to reach, in finite time, a common consensus value represented as the ratio of two quantized values that is equal to the exact average. We conclude with examples that illustrate the operation, performance, and potential advantages of the proposed algorithms.
Signed networks are such social networks having both positive and negative links. A lot of theories and algorithms have been developed to model such networks (e.g., balance theory). However, previous work mainly focuses on the unipartite signed netwo rks where the nodes have the same type. Signed bipartite networks are different from classical signed networks, which contain two different node sets and signed links between two node sets. Signed bipartite networks can be commonly found in many fields including business, politics, and academics, but have been less studied. In this work, we firstly define the signed relationship of the same set of nodes and provide a new perspective for analyzing signed bipartite networks. Then we do some comprehensive analysis of balance theory from two perspectives on several real-world datasets. Specifically, in the peer review dataset, we find that the ratio of balanced isomorphism in signed bipartite networks increased after rebuttal phases. Guided by these two perspectives, we propose a novel Signed Bipartite Graph Neural Networks (SBGNNs) to learn node embeddings for signed bipartite networks. SBGNNs follow most GNNs message-passing scheme, but we design new message functions, aggregation functions, and update functions for signed bipartite networks. We validate the effectiveness of our model on four real-world datasets on Link Sign Prediction task, which is the main machine learning task for signed networks. Experimental results show that our SBGNN model achieves significant improvement compared with strong baseline methods, including feature-based methods and network embedding methods.
Average consensus is extensively used in distributed networks for computation and control, where all the agents constantly communicate with each other and update their states in order to reach an agreement. Under a general average consensus algorithm , information exchanged through wireless or wired communication networks could lead to the disclosure of sensitive and private information. In this paper, we propose a privacy-preserving push-sum approach for directed networks that can protect the privacy of all agents while achieving average consensus simultaneously. Each node decomposes its initial state arbitrarily into two substates, and their average equals to the initial state, guaranteeing that the agents state will converge to the accurate average consensus. Only one substate is exchanged by the node with its neighbours over time, and the other one is reserved. That is to say, only the exchanged substate would be visible to an adversary, preventing the initial state information from leakage. Different from the existing state-decomposition approach which only applies to undirected graphs, our proposed approach is applicable to strongly connected digraphs. In addition, in direct contrast to offset-adding based privacy-preserving push-sum algorithm, which is vulnerable to an external eavesdropper, our proposed approach can ensure privacy against both an honest-but-curious node and an external eavesdropper. A numerical simulation is provided to illustrate the effectiveness of the proposed approach.
This paper develops tools to quantify the importance of agent interactions and its impact on global performance metrics for networks modeled as linear time-invariant systems. We consider Gramian-based performance metrics and propose a novel notion of edge centrality that encodes the first-order variation in the metric with respect to the modification of the corresponding edge weight, including for those edges not present in the network. The proposed edge centrality matrix (ECM) is additive over the set of inputs, i.e., it captures the specific contribution to each edges centrality of the presence of any given actuator. We provide a full characterization of the ECM structure for the class of directed stem-bud networks, showing that non-zero entries are only possible at specific sub/super-diagonals determined by the network size and the length of its bud. We also provide bounds on the value of the trace, trace inverse, and log-det of the Gramian before and after single-edge modifications, and on the edge-modification weight to ensure the modified network retains stability. Simulations show the utility of the proposed edge centrality notion and validate our results.
We study the distributed average consensus problem in multi-agent systems with directed communication links that are subject to quantized information flow. The goal of distributed average consensus is for the nodes, each associated with some initial value, to obtain the average (or some value close to the average) of these initial values. In this paper, we present and analyze a distributed averaging algorithm which operates exclusively with quantized values (specifically, the information stored, processed and exchanged between neighboring agents is subject to deterministic uniform quantization) and rely on event-driven updates (e.g., to reduce energy consumption, communication bandwidth, network congestion, and/or processor usage). We characterize the properties of the proposed distributed averaging protocol, illustrate its operation with an example, and show that its execution, on any timeinvariant and strongly connected digraph, will allow all agents to reach, in finite time, a common consensus value that is equal to the quantized average. We conclude with comparisons against existing quantized average consensus algorithms that illustrate the performance and potential advantages of the proposed algorithm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا