ﻻ يوجد ملخص باللغة العربية
Inverse design of large-area metasurfaces can potentially exploit the full parameter space that such devices offer and achieve highly efficient multifunctional flat optical elements. However, since practically useful flat optics elements are large in the linear dimension, an accurate simulation of their scattering properties is challenging. Here, we demonstrate a method to compute accurate simulations and gradients of large-area metasurfaces. Our approach relies on two key ingredients - a simulation distribution strategy that allows a linear reduction in the simulation time with number of compute (GPU) nodes and an efficient single-node computation using the Transition-matrix (T-matrix) method. We demonstrate ability to perform a distributed simulation of large-area, while accurately accounting for scatterer-scatterer interactions significantly beyond the locally periodic approximation, and efficiently compute gradients with respect to the metasurface design parameters. This scalable and accurate metasurface simulation method opens the door to gradient-based optimization of full large-area metasurfaces.
We develop a single-layer waveguide surface grating structure to vertically couple near infrared (NIR) light at ~1.55 um wavelength from a large area (~100 um length scale) Si waveguide on a Silicon-On-Insulator (SOI) substrates to free-space for hig
The classical adjoint-based topology optimization (TO) method, based on the use of a random continuous dielectric function as an adjoint variable distribution, is known to be one of the most efficient optimization methods that enable the design of op
Recently, we proposed a metasurface design for chiral sensing that (i) results in enhanced chiroptical signals by more than two orders of magnitude for ultrathin, subwavelength, chiral samples over a uniform and accessible area, (ii) allows for compl
Meta-optics based on optically-resonant dielectric nanostructures is a rapidly developing research field with many potential applications. Halide perovskite metasurfaces emerged recently as a novel platform for meta-optics, and they offer unique oppo
The improvement of light-emitting diodes (LEDs) is one of the major goals of optoelectronics and photonics research. While emission rate enhancement is certainly one of the targets, in this regard, for LED integration to complex photonic devices, one