ترغب بنشر مسار تعليمي؟ اضغط هنا

Control of LED Emission with Functional Dielectric Metasurfaces

103   0   0.0 ( 0 )
 نشر من قبل Arseniy Kuznetsov
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The improvement of light-emitting diodes (LEDs) is one of the major goals of optoelectronics and photonics research. While emission rate enhancement is certainly one of the targets, in this regard, for LED integration to complex photonic devices, one would require to have, additionally, precise control of the wavefront of the emitted light. Metasurfaces are spatial arrangements of engineered scatters that may enable this light manipulation capability with unprecedented resolution. Most of these devices, however, are only able to function properly under irradiation of light with a large spatial coherence, typically normally incident lasers. LEDs, on the other hand, have angularly broad, Lambertian-like emission patterns characterized by a low spatial coherence, which makes the integration of metasurface devices on LED architectures extremely challenging. A novel concept for metasurface integration on LED is proposed, using a cavity to increase the LED spatial coherence through an angular collimation. Due to the resonant character of the cavity, extending the spatial coherence of the emitted light does not come at the price of any reduction in the total emitted power. The experimental demonstration of the proposed concept is implemented on a GaP LED architecture including a hybrid metallic-Bragg cavity. By integrating a silicon metasurface on top we demonstrate two different functionalities of these compact devices: directional LED emission at a desired angle and LED emission of a vortex beam with an orbital angular momentum. The presented concept is general, being applicable to other incoherent light sources and enabling metasurfaces designed for plane waves to work with incoherent light emitters.



قيم البحث

اقرأ أيضاً

Fingerprint spectral response of several materials with terahertz electromagnetic radiation indicates that terahertz technology is an effective tool for sensing applications. However, sensing few nanometer thin-film of dielectrics with much longer te rahertz waves (1 THz = 0.3 mm) is challenging. Here, we demonstrate a quasi-bound state in the continuum (BIC) resonance for sensing of nanometer scale thin analyte deposited on a flexible metasurface. The large sensitivity originates from strong local field confinement of the quasi-BIC Fano resonance state and extremely low absorption loss of a low-index cyclic olefin copolymer substrate. A minimum thickness of 7 nm thin-film of germanium is sensed on the metasurface, which corresponds to a deep subwavelength length scale of {lambda}/43000, where {lambda} is the resonance wavelength. The low-loss, flexible and large mechanical strength of the quasi-BIC micro structured metamaterial sensor could be an ideal platform for developing ultrasensitive wearable terahertz sensors.
Hybrid dielectric metasurfaces have emerged as a promising approach to enhancing near field confinement and thus achieving high optical nonlinearity using low loss dielectrics. Additional flexibility in design and fabrication of hybrid metasurfaces a llows dynamic control of light, which is value-added for a wider range of applications. Here, we demonstrate a tunable and efficient third harmonic generation (THG) via hybrid metasurfaces with phase change material Ge2Sb2Te5 (GST) deposited on top of amorphous silicon nanostructutes. Fano resonance is excited to confine the incident light inside the hybrid metasurfaces, and an experimental quality factor ($Q$-factor) of 125 is achieved at the fundamental pump wavelength around 1210 nm. We demonstrate the switching between a turn-on state of Fano resonance in the amorphous state of GST and a turn-off state in its crystalline state and also gradual multistate tuning of THG emission at its intermediate state. We achieve a high THG conversion efficiency of ${eta} = 2.9*10^{-6}$ %, which is more than ~32 times of that of a GST-based Fabry-P`erot cavity under a similar pump laser power, thanks to the enhanced field confinement due to the Fano resonance. Our results show the strong potential of GST-based hybrid dielectric metasurfaces for efficient and tunable nonlinear optical devices.
Compact varifocal lenses are essential to various imaging and vision technologies. However, existing varifocal elements typically rely on mechanically-actuated systems with limited tuning speeds and scalability. Here, an ultrathin electrically contro lled varifocal lens based on a liquid crystal (LC) encapsulated semiconductor metasurface is demonstrated. Enabled by the field-dependent LC anisotropy, applying a voltage bias across the LC cell modifies the local phase response of the silicon meta-atoms, in turn modifying the focal length of the metalens. In a numerical implementation, a voltage-actuated metalens with continuous zoom and up to 20% total focal shift is demonstrated. The concept of LC-based metalens is experimentally verified through the design and fabrication of a bifocal metalens that facilitates high-contrast switching between two discrete focal lengths upon application of a 3.2 V$_{rm pp}$ voltage bias. Owing to their ultrathin thickness and adaptable design, LC-driven semiconductor metasurfaces open new opportunities for compact varifocal lensing in a diversity of modern imaging applications.
Electromagnetic fields coupled with mechanical degrees of freedom have recently shown exceptional and innovative applications, ultimately leading to mesoscopic optomechanical devices operating in the quantum regime of motion. Simultaneously, micromec hanical elements have provided new ways to enhance and manipulate the optical properties of passive photonic elements. Following this concept, in this article we show how combining a chiral metasurface with a GaAs suspended micromembrane can offer new scenarios for controlling the polarization state of near-infrared light beams. Starting from the uncommon properties of chiral metasurface to statically realize target polarization states and circular and linear dichroism, we report mechanically induced, ~300 kHz polarization modulation, which favorably compares, in terms of speed, with liquid-crystals commercial devices. Moreover, we demonstrate how the mechanical resonance can be non-trivially affected by the input light polarization (and chiral state) via a thermoelastic effect triggered by intracavity photons. This work inaugurates the field of Polarization Optomechanics, which could pave the way to fast polarimetric devices, polarization modulators and dynamically tunable chiral state generators and detectors, as well as giving access to new form of polarization nonlinearities and control.
149 - Jie Fang , Mingsong Wang , Kan Yao 2020
Coupling emitters with nanoresonators is an effective strategy to control light emission at the subwavelength scale with high efficiency. Low-loss dielectric nanoantennas hold particular promise for this purpose, owing to their strong Mie resonances. Herein, we explore a highly miniaturized platform for the control of emission based on individual subwavelength Si nanospheres (SiNSs) to modulate the directional excitation and exciton emission of two-dimensional transition metal dichalcogenides (2D TMDs). A modified Mie theory for dipole-sphere hybrid systems is derived to instruct the optimal design for desirable modulation performance. Controllable forward-to-backward intensity ratios are experimentally validated in 532 nm laser excitation and 635 nm exciton emission from a monolayer WS2. Versatile light emission control along all device orientations is achieved for different emitters and excitation wavelengths, benefiting from the facile size control and isotropic shape of SiNSs. Simultaneous modulation of excitation and emission via a single SiNS at visible wavelengths significantly improves the efficiency and directivity of TMD exciton emission and leads to the potential of multifunctional integrated photonics. Overall, our work opens promising opportunities for nanophotonics and polaritonic systems, enabling efficient manipulation, enhancement and reconfigurability of light-matter interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا