ﻻ يوجد ملخص باللغة العربية
We develop a single-layer waveguide surface grating structure to vertically couple near infrared (NIR) light at ~1.55 um wavelength from a large area (~100 um length scale) Si waveguide on a Silicon-On-Insulator (SOI) substrates to free-space for high-power laser applications. Our design approach is based on the optimization of local emission angles and the out-coupling intensities. Simulation results show that a focal spot with a 1/e2 width of 3.82 um can be achieved at the desired focal position, with 33% (-4.81 dB) simulated source to free-space focusing efficiency, while initial measurements show an efficiency of 22% (-6.58 dB).
MAGIX is a planned experiment that will be implemented at the upcoming accelerator MESA in Mainz. Due to its location in the energy-recovering lane of the accelerator beam-currents up to 1mA with a maximum energy of 105 MeV will be available for prec
Inverse design of large-area metasurfaces can potentially exploit the full parameter space that such devices offer and achieve highly efficient multifunctional flat optical elements. However, since practically useful flat optics elements are large in
Neutron scattering techniques offer a unique combination of structural and the dynamic information of atomic and molecular systems over a wide range of distances and times. The increasing complexity in science investigations driven by technological a
Two-dimensional semiconducting transition metal dichalcogenides embedded in optical microcavities in the strong exciton-photon coupling regime may lead to promising applications in spin and valley addressable polaritonic logic gates and circuits. One
We optimize multilayered anti-reflective coatings for photovoltaic devices, using modern evolutionary algorithms. We apply a rigorous methodology to show that a given structure, which is particularly regular, emerge spontaneously in a very systematic