ترغب بنشر مسار تعليمي؟ اضغط هنا

CogME: A Novel Evaluation Metric for Video Understanding Intelligence

230   0   0.0 ( 0 )
 نشر من قبل Minjung Shin
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Minjung Shin




اسأل ChatGPT حول البحث

Developing video understanding intelligence is quite challenging because it requires holistic integration of images, scripts, and sounds based on natural language processing, temporal dependency, and reasoning. Recently, substantial attempts have been made on several video datasets with associated question answering (QA) on a large scale. However, existing evaluation metrics for video question answering (VideoQA) do not provide meaningful analysis. To make progress, we argue that a well-made framework, established on the way humans understand, is required to explain and evaluate the performance of understanding in detail. Then we propose a top-down evaluation system for VideoQA, based on the cognitive process of humans and story elements: Cognitive Modules for Evaluation (CogME). CogME is composed of three cognitive modules: targets, contents, and thinking. The interaction among the modules in the understanding procedure can be expressed in one sentence as follows: I understand the CONTENT of the TARGET through a way of THINKING. Each module has sub-components derived from the story elements. We can specify the required aspects of understanding by annotating the sub-components to individual questions. CogME thus provides a framework for an elaborated specification of VideoQA datasets. To examine the suitability of a VideoQA dataset for validating video understanding intelligence, we evaluated the baseline model of the DramaQA dataset by applying CogME. The evaluation reveals that story elements are unevenly reflected in the existing dataset, and the model based on the dataset may cause biased predictions. Although this study has only been able to grasp a narrow range of stories, we expect that it offers the first step in considering the cognitive process of humans on the video understanding intelligence of humans and AI.



قيم البحث

اقرأ أيضاً

89 - Linjie Li , Jie Lei , Zhe Gan 2021
Most existing video-and-language (VidL) research focuses on a single dataset, or multiple datasets of a single task. In reality, a truly useful VidL system is expected to be easily generalizable to diverse tasks, domains, and datasets. To facilitate the evaluation of such systems, we introduce Video-And-Language Understanding Evaluation (VALUE) benchmark, an assemblage of 11 VidL datasets over 3 popular tasks: (i) text-to-video retrieval; (ii) video question answering; and (iii) video captioning. VALUE benchmark aims to cover a broad range of video genres, video lengths, data volumes, and task difficulty levels. Rather than focusing on single-channel videos with visual information only, VALUE promotes models that leverage information from both video frames and their associated subtitles, as well as models that share knowledge across multiple tasks. We evaluate various baseline methods with and without large-scale VidL pre-training, and systematically investigate the impact of video input channels, fusion methods, and different video representations. We also study the transferability between tasks, and conduct multi-task learning under different settings. The significant gap between our best model and human performance calls for future study for advanced VidL models. VALUE is available at https://value-benchmark.github.io/.
Recent advances in deep generative models have lead to remarkable progress in synthesizing high quality images. Following their successful application in image processing and representation learning, an important next step is to consider videos. Lear ning generative models of video is a much harder task, requiring a model to capture the temporal dynamics of a scene, in addition to the visual presentation of objects. While recent attempts at formulating generative models of video have had some success, current progress is hampered by (1) the lack of qualitative metrics that consider visual quality, temporal coherence, and diversity of samples, and (2) the wide gap between purely synthetic video data sets and challenging real-world data sets in terms of complexity. To this extent we propose Fr{e}chet Video Distance (FVD), a new metric for generative models of video, and StarCraft 2 Videos (SCV), a benchmark of game play from custom starcraft 2 scenarios that challenge the current capabilities of generative models of video. We contribute a large-scale human study, which confirms that FVD correlates well with qualitative human judgment of generated videos, and provide initial benchmark results on SCV.
246 - Srijan Das , Rui Dai , Di Yang 2021
Many attempts have been made towards combining RGB and 3D poses for the recognition of Activities of Daily Living (ADL). ADL may look very similar and often necessitate to model fine-grained details to distinguish them. Because the recent 3D ConvNets are too rigid to capture the subtle visual patterns across an action, this research direction is dominated by methods combining RGB and 3D Poses. But the cost of computing 3D poses from RGB stream is high in the absence of appropriate sensors. This limits the usage of aforementioned approaches in real-world applications requiring low latency. Then, how to best take advantage of 3D Poses for recognizing ADL? To this end, we propose an extension of a pose driven attention mechanism: Video-Pose Network (VPN), exploring two distinct directions. One is to transfer the Pose knowledge into RGB through a feature-level distillation and the other towards mimicking pose driven attention through an attention-level distillation. Finally, these two approaches are integrated into a single model, we call VPN++. We show that VPN++ is not only effective but also provides a high speed up and high resilience to noisy Poses. VPN++, with or without 3D Poses, outperforms the representative baselines on 4 public datasets. Code is available at https://github.com/srijandas07/vpnplusplus.
The TREC Video Retrieval Evaluation (TRECVID) 2019 was a TREC-style video analysis and retrieval evaluation, the goal of which remains to promote progress in research and development of content-based exploitation and retrieval of information from dig ital video via open, metrics-based evaluation. Over the last nineteen years this effort has yielded a better understanding of how systems can effectively accomplish such processing and how one can reliably benchmark their performance. TRECVID has been funded by NIST (National Institute of Standards and Technology) and other US government agencies. In addition, many organizations and individuals worldwide contribute significant time and effort. TRECVID 2019 represented a continuation of four tasks from TRECVID 2018. In total, 27 teams from various research organizations worldwide completed one or more of the following four tasks: 1. Ad-hoc Video Search (AVS) 2. Instance Search (INS) 3. Activities in Extended Video (ActEV) 4. Video to Text Description (VTT) This paper is an introduction to the evaluation framework, tasks, data, and measures used in the workshop.
In this paper, a novel statistical metric learning is developed for spectral-spatial classification of the hyperspectral image. First, the standard variance of the samples of each class in each batch is used to decrease the intra-class variance withi n each class. Then, the distances between the means of different classes are used to penalize the inter-class variance of the training samples. Finally, the standard variance between the means of different classes is added as an additional diversity term to repulse different classes from each other. Experiments have conducted over two real-world hyperspectral image datasets and the experimental results have shown the effectiveness of the proposed statistical metric learning.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا