ﻻ يوجد ملخص باللغة العربية
Most existing video-and-language (VidL) research focuses on a single dataset, or multiple datasets of a single task. In reality, a truly useful VidL system is expected to be easily generalizable to diverse tasks, domains, and datasets. To facilitate the evaluation of such systems, we introduce Video-And-Language Understanding Evaluation (VALUE) benchmark, an assemblage of 11 VidL datasets over 3 popular tasks: (i) text-to-video retrieval; (ii) video question answering; and (iii) video captioning. VALUE benchmark aims to cover a broad range of video genres, video lengths, data volumes, and task difficulty levels. Rather than focusing on single-channel videos with visual information only, VALUE promotes models that leverage information from both video frames and their associated subtitles, as well as models that share knowledge across multiple tasks. We evaluate various baseline methods with and without large-scale VidL pre-training, and systematically investigate the impact of video input channels, fusion methods, and different video representations. We also study the transferability between tasks, and conduct multi-task learning under different settings. The significant gap between our best model and human performance calls for future study for advanced VidL models. VALUE is available at https://value-benchmark.github.io/.
The advent of natural language understanding (NLU) benchmarks for English, such as GLUE and SuperGLUE allows new NLU models to be evaluated across a diverse set of tasks. These comprehensive benchmarks have facilitated a broad range of research and a
With the recent success of the pre-training technique for NLP and image-linguistic tasks, some video-linguistic pre-training works are gradually developed to improve video-text related downstream tasks. However, most of the existing multimodal models
Language understanding in speech-based systems have attracted much attention in recent years with the growing demand for voice interface applications. However, the robustness of natural language understanding (NLU) systems to errors introduced by aut
Artificial Intelligence (AI), along with the recent progress in biomedical language understanding, is gradually changing medical practice. With the development of biomedical language understanding benchmarks, AI applications are widely used in the me
Recently, there has been an increasing number of efforts to introduce models capable of generating natural language explanations (NLEs) for their predictions on vision-language (VL) tasks. Such models are appealing, because they can provide human-fri