ﻻ يوجد ملخص باللغة العربية
The interest in non-linear impulsive systems (NIS) has been growing due to its impact in application problems such as disease treatments (diabetes, HIV, influenza, among many others), where the control action (drug administration) is given by short-duration pulses followed by time periods of null values. Within this framework the concept of equilibrium needs to be extended (redefined) to allows the system to keep orbiting (between two consecutive pulses) in some state space regions out of the origin, according to usual objectives of most real applications. Although such regions can be characterized by means of a discrete-time system obtained by sampling the NIS at the impulsive times, no agreements have reached about their asymptotic stability (AS). This paper studies the asymptotic stability of control equilibrium orbits for NSI, based on the underlying discrete time system, in order to establish the conditions under which the AS for the latter leads to the AS for the former. Furthermore, based on the latter AS characterization, an impulsive Model Predictive Control (i-MPC) that feasibly stabilizes the non-linear impulsive system is presented. Finally, the proposed stable MPC is applied to two control problems of interest: the intravenous bolus administration of Lithium and the administration of antiretrovirals for HIV treatments.
In this paper, we propose a chance constrained stochastic model predictive control scheme for reference tracking of distributed linear time-invariant systems with additive stochastic uncertainty. The chance constraints are reformulated analytically b
We study safe, data-driven control of (Markov) jump linear systems with unknown transition probabilities, where both the discrete mode and the continuous state are to be inferred from output measurements. To this end, we develop a receding horizon es
This paper deals with the stability analysis problem of discrete-time switched linear systems with ranged dwell time. A novel concept called L-switching-cycle is proposed, which contains sequences of multiple activation cycles satisfying the prescrib
We study predictive control in a setting where the dynamics are time-varying and linear, and the costs are time-varying and well-conditioned. At each time step, the controller receives the exact predictions of costs, dynamics, and disturbances for th
We present a data-driven model predictive control scheme for chance-constrained Markovian switching systems with unknown switching probabilities. Using samples of the underlying Markov chain, ambiguity sets of transition probabilities are estimated w