ﻻ يوجد ملخص باللغة العربية
The recent emergence of magnetic van der Waals materials allows for the investigation of current induced magnetization manipulation in two dimensional materials. Uniquely, Fe3GeTe2 has a crystalline structure that allows for the presence of bulk spin-orbit torques (SOTs), that we quantify in a Fe3GeTe2 flake. From the symmetry of the measured torques, we identify the current induced effective fields using harmonic analysis and find dominant bulk SOTs, which arise from the symmetry in the crystal structure. Our results show that Fe3GeTe2 uniquely can exhibit bulk SOTs in addition to the conventional interfacial SOTs enabling magnetization manipulation even in thick single layers without the need for complex multilayer engineering.
In this work, we reported the observation of a novel planar topological Hall effect (PTHE) in single crystal of Fe3GeTe2, a paradigmatic two-dimensional ferromagnet with strong uniaxial anisotropy. The Hall effect and magnetoresistance varied periodi
Two-dimensional (2D) van der Waals (vdW) magnetic materials have recently been introduced as a new horizon in materials science and enable the potential applications for next-generation spintronic devices. Here, in this communication, the observation
The recent discovery of ferromagnetism in two-dimensional (2D) van der Waals (vdW) materials holds promises for novel spintronic devices with exceptional performances. However, in order to utilize 2D vdW magnets for building spintronic nanodevices su
Van der Waals (vdW) heterostructures, stacking different two-dimensional materials, have opened up unprecedented opportunities to explore new physics and device concepts. Especially interesting are recently discovered two-dimensional magnetic vdW mat
In two-dimensional van der Waals (vdW) magnets, the presence of magnetic orders, strong spin-orbit coupling and asymmetry at interfaces is the key ingredient for hosting chiral spin textures. However, experimental evidences for chiral magnetism in vd