ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct observations of chiral spin textures in van der Waals magnet Fe3GeTe2 nanolayers

120   0   0.0 ( 0 )
 نشر من قبل Zi-An Li
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In two-dimensional van der Waals (vdW) magnets, the presence of magnetic orders, strong spin-orbit coupling and asymmetry at interfaces is the key ingredient for hosting chiral spin textures. However, experimental evidences for chiral magnetism in vdW magnets remain elusive. Here we demonstrate unambiguously the formation of chiral spin textures in thin Fe3GeTe2 nanoflakes using advanced magnetic electron microscopy and first-principles calculations. Specifically, electron holography analyses reveal the spin configurations of Neel-type, zero-field-stabilized skyrmions in 20-nm-thick Fe3GeTe2 nanoflakes at cryogenic temperature. In situ Lorentz transmission electron microscopy measurements further provide detailed magnetic phase diagrams of chiral spin textures including spirals and skyrmions in Fe3GeTe2 as a function of temperature, applied magnetic field and specimen thickness. First-principles calculations unveil a finite interfacial Dzyaloshinskii-Moriya interaction in the Te/Fe3Ge/Te slabs that induces the spin chirality in Fe3GeTe2. Our discovery of spin chirality in the prototypical vdW Fe3GeTe2 opens up new opportunities for studying chiral magnetism in two-dimensional vdW magnets from both fundamental and applied perspectives.

قيم البحث

اقرأ أيضاً

Two-dimensional (2D) van der Waals (vdW) materials show a range of profound physical properties that can be tailored through their incorporation in heterostructures and manipulated with external forces. The recent discovery of long-range ferromagneti c order down to atomic layers provides an additional degree of freedom in engineering 2D materials and their heterostructure devices for spintronics, valleytronics and magnetic tunnel junction switches. Here, using direct imaging by cryo-Lorentz transmission electron microscopy we show that topologically nontrivial magnetic-spin states, skyrmionic bubbles, can be realized in exfoliated insulating 2D vdW Cr2Ge2Te6. Due to the competition between dipolar interactions and uniaxial magnetic anisotropy, hexagonally-packed nanoscale bubble lattices emerge by field cooling with magnetic field applied along the out-of-plane direction. Despite a range of topological spin textures in stripe domains arising due to pair formation and annihilation of Bloch lines, bubble lattices with single chirality are prevalent. Our observation of topologically-nontrivial homochiral skyrmionic bubbles in exfoliated vdW materials provides a new avenue for novel quantum states in atomically-thin insulators for magneto-electronic and quantum devices.
Van der Waals (vdW) heterostructures, stacking different two-dimensional materials, have opened up unprecedented opportunities to explore new physics and device concepts. Especially interesting are recently discovered two-dimensional magnetic vdW mat erials, providing new paradigms for spintronic applications. Here, using density functional theory (DFT) calculations, we investigate the spin-dependent electronic transport across vdW magnetic tunnel junctions (MTJs) composed of Fe3GeTe2 ferromagnetic electrodes and a graphene or hexagonal boron nitride (h-BN) spacer layer. For both types of junctions, we find that the junction resistance changes by thousands of percent when the magnetization of the electrodes is switched from parallel to antiparallel. Such a giant tunneling magnetoresistance (TMR) effect is driven by dissimilar electronic structure of the two spin-conducting channels in Fe3GeTe2, resulting in a mismatch between the incoming and outgoing Bloch states in the electrodes and thus suppressed transmission for an antiparallel-aligned MTJ. The vdW bounding between electrodes and a spacer layer makes this result virtually independent of the type of the spacer layer, making the predicted giant TMR effect robust with respect to strain, lattice mismatch, interface distance and other parameters which may vary in the experiment. We hope that our results will further stimulate experimental studies of vdW MTJs and pave the way for their applications in spintronics.
The recent emergence of magnetic van der Waals materials allows for the investigation of current induced magnetization manipulation in two dimensional materials. Uniquely, Fe3GeTe2 has a crystalline structure that allows for the presence of bulk spin -orbit torques (SOTs), that we quantify in a Fe3GeTe2 flake. From the symmetry of the measured torques, we identify the current induced effective fields using harmonic analysis and find dominant bulk SOTs, which arise from the symmetry in the crystal structure. Our results show that Fe3GeTe2 uniquely can exhibit bulk SOTs in addition to the conventional interfacial SOTs enabling magnetization manipulation even in thick single layers without the need for complex multilayer engineering.
The promise of high-density and low-energy-consumption devices motivates the search for layered structures that stabilize chiral spin textures such as topologically protected skyrmions. At the same time, layered structures provide a new platform for the discovery of new physics and effects. Recently discovered long-range intrinsic magnetic orders in the two-dimensional van der Waals materials offer new opportunities. Here we demonstrate the Dzyaloshinskii-Moriya interaction and Neel-type skyrmions are induced at the WTe2/Fe3GeTe2 interface. Fe3GeTe2 is a ferromagnetic material with strong perpendicular magnetic anisotropy. We demonstrate that the strong spin orbit interaction in 1T-WTe2 does induce a large interfacial Dzyaloshinskii-Moriya interaction at the interface with Fe3GeTe2 due to the inversion symmetry breaking to stabilize skyrmions. Transport measurements show the topological Hall effect in this heterostructure for temperatures below 100 K. Furthermore, Lorentz transmission electron microscopy is used to directly image Neel-type skyrmions along with aligned and stripe-like domain structure. This interfacial coupling induced Dzyaloshinskii-Moriya interaction is estimated to have a large energy of 1.0 mJ/m^2, which can stabilize the Neel-type skyrmions in this heterostructure. This work paves a path towards the skyrmionic devices based on van der Waals heterostructures.
Controlling magnetism in low dimensional materials is essential for designing devices that have feature sizes comparable to several critical length scales that exploit functional spin textures, allowing the realization of low-power spintronic and mag neto-electric hardware. [1] Unlike conventional covalently-bonded bulk materials, van der Waals (vdW)-bonded layered magnets [2-4] offer exceptional degrees of freedom for engineering spin textures. [5] However, their structural instability has hindered microscopic studies and manipulations. Here, we demonstrate nanoscale structural control in the layered magnet CrSBr creating novel spin textures down to the atomic scale. We show that it is possible to drive a local structural phase transformation using an electron beam that locally exchanges the bondings in different directions, effectively creating regions that have vertical vdW layers embedded within the horizontally vdW bonded exfoliated flakes. We calculate that the newly formed 2D structure is ferromagnetically ordered in-plane with an energy gap in the visible spectrum, and weak antiferromagnetism between the planes. Our study lays the groundwork for designing and studying novel spin textures and related quantum magnetic phases down to single-atom sensitivity, potentially to create on-demand spin Hamiltonians probing fundamental concepts in physics, [6-10] and for realizing high-performance spintronic, magneto-electric and topological devices with nanometer feature sizes. [11,12]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا