ﻻ يوجد ملخص باللغة العربية
In this work, we reported the observation of a novel planar topological Hall effect (PTHE) in single crystal of Fe3GeTe2, a paradigmatic two-dimensional ferromagnet with strong uniaxial anisotropy. The Hall effect and magnetoresistance varied periodically when the external magnetic field rotated in the ac (or bc) plane, while the PTHE emerged and maintained robust with field swept across the hard-magnetized ab plane. The PTHE covers the whole temperature region below Tc (~150 K) and a comparatively large value is observed at 100 K. Emergence of an internal gauge field was proposed to explain the origin of this large PTHE, which is either generated by the possible topological domain structure of uniaxial Fe3GeTe2 or the non-coplanar spin structure formed during the in-plane magnetization. Our results promisingly provide an alternative detection method to the in-plane skyrmion formation and may bring brand-new prospective to magneto-transport studies in condensed matter physics.
Two-dimensional (2D) van der Waals (vdW) magnetic materials have recently been introduced as a new horizon in materials science and enable the potential applications for next-generation spintronic devices. Here, in this communication, the observation
Two-dimensional (2D) van der Waals (vdW) magnetic materials have attracted a lot of attention owing to the stabilization of long-range magnetic order down to atomic dimensions, and the prospect of novel spintronic devices with unique functionalities.
The recent emergence of magnetic van der Waals materials allows for the investigation of current induced magnetization manipulation in two dimensional materials. Uniquely, Fe3GeTe2 has a crystalline structure that allows for the presence of bulk spin
The recent discovery of ferromagnetism in two-dimensional (2D) van der Waals (vdW) materials holds promises for novel spintronic devices with exceptional performances. However, in order to utilize 2D vdW magnets for building spintronic nanodevices su
Robust multi-level spin memory with the ability to write information electrically is a long-sought capability in spintronics, with great promise for applications. Here we achieve nonvolatile and highly energy-efficient magnetization switching in a si