ﻻ يوجد ملخص باللغة العربية
Write $mathrm{ord}_p(cdot)$ for the multiplicative order in $mathbb{F}_p^{times}$. Recently, Matthew Just and the second author investigated the problem of classifying pairs $alpha, beta in mathbb{Q}^{times}setminus{pm 1}$ for which $mathrm{ord}_p(alpha) > mathrm{ord}_p(beta)$ holds for infinitely many primes $p$. They called such pairs order-dominant. We describe an easily-checkable sufficient condition for $alpha,beta$ to be order-dominant. Via the large sieve, we show that almost all integer pairs $alpha,beta$ satisfy our condition, with a power savings on the size of the exceptional set.
For g,n coprime integers, let l_g(n) denote the multiplicative order of g modulo n. Motivated by a conjecture of Arnold, we study the average of l_g(n) as n <= x ranges over integers coprime to g, and x tending to infinity. Assuming the Generalized R
We obtain asymptotics for sums of the form $$ sum_{n=1}^P e(alpha_kn^k + alpha_1n), $$ involving lower order main terms. As an application, we show that for almost all $alpha_2 in [0,1)$ one has $$ sup_{alpha_1 in [0,1)} Big| sum_{1 le n le
We introduce a shifted convolution sum that is parametrized by the squarefree natural number $t$. The asymptotic growth of this series depends explicitly on whether or not $t$ is a emph{congruent number}, an integer that is the area of a rational rig
In 1947 Mills proved that there exists a constant $A$ such that $lfloor A^{3^n} rfloor$ is a prime for every positive integer $n$. Determining $A$ requires determining an effective Hoheisel type result on the primes in short intervals - though most b
The generalized Gauss circle problem concerns the lattice point discrepancy of large spheres. We study the Dirichlet series associated to $P_k(n)^2$, where $P_k(n)$ is the discrepancy between the volume of the $k$-dimensional sphere of radius $sqrt{n