ﻻ يوجد ملخص باللغة العربية
For g,n coprime integers, let l_g(n) denote the multiplicative order of g modulo n. Motivated by a conjecture of Arnold, we study the average of l_g(n) as n <= x ranges over integers coprime to g, and x tending to infinity. Assuming the Generalized Riemann Hypothesis, we show that this average is essentially as large as the average of the Carmichael lambda function. We also determine the asymptotics of the average of l_g(p) as p <= x ranges over primes.
We obtain explicit lower bounds on multiplicative order of elements that have more general form than finite field Gauss period. In a partial case of Gauss period this bound improves the previous bound of O.Ahmadi, I.E.Shparlinski and J.F.Voloch
Let $G$ be a graph and $tau$ be an assignment of nonnegative integer thresholds to the vertices of $G$. A subset of vertices $D$ is said to be a $tau$-dynamic monopoly, if $V(G)$ can be partitioned into subsets $D_0, D_1, ldots, D_k$ such that $D_0=D
Write $mathrm{ord}_p(cdot)$ for the multiplicative order in $mathbb{F}_p^{times}$. Recently, Matthew Just and the second author investigated the problem of classifying pairs $alpha, beta in mathbb{Q}^{times}setminus{pm 1}$ for which $mathrm{ord}_p(al
Using the following $_4F_3$ transformation formula $$ sum_{k=0}^{n}{-x-1choose k}^2{xchoose n-k}^2=sum_{k=0}^{n}{n+kchoose 2k}{2kchoose k}^2{x+kchoose 2k}, $$ which can be proved by Zeilbergers algorithm, we confirm some special cases of a recent con
In this note, I study a comparison map between a motivic and {e}tale cohomology group of an elliptic curve over $mathbb{Q}$ just outside the range of Voevodskys isomorphism theorem. I show that the property of an appropriate version of the map being