ترغب بنشر مسار تعليمي؟ اضغط هنا

Causal Inference Struggles with Agency on Online Platforms

55   0   0.0 ( 0 )
 نشر من قبل Smitha Milli
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Online platforms regularly conduct randomized experiments to understand how changes to the platform causally affect various outcomes of interest. However, experimentation on online platforms has been criticized for having, among other issues, a lack of meaningful oversight and user consent. As platforms give users greater agency, it becomes possible to conduct observational studies in which users self-select into the treatment of interest as an alternative to experiments in which the platform controls whether the user receives treatment or not. In this paper, we conduct four large-scale within-study comparisons on Twitter aimed at assessing the effectiveness of observational studies derived from user self-selection on online platforms. In a within-study comparison, treatment effects from an observational study are assessed based on how effectively they replicate results from a randomized experiment with the same target population. We test the naive difference in group means estimator, exact matching, regression adjustment, and inverse probability of treatment weighting while controlling for plausible confounding variables. In all cases, all observational estimates perform poorly at recovering the ground-truth estimate from the analogous randomized experiments. In all cases except one, the observational estimates have the opposite sign of the randomized estimate. Our results suggest that observational studies derived from user self-selection are a poor alternative to randomized experimentation on online platforms. In discussing our results, we postulate Catch-22s that suggest that the success of causal inference in these settings may be at odds with the original motivations for providing users with greater agency.

قيم البحث

اقرأ أيضاً

Methods for causal inference from observational data are an alternative for scenarios where collecting counterfactual data or realizing a randomized experiment is not possible. Adopting a stacking approach, our proposed method ParKCA combines the res ults of several causal inference methods to learn new causes in applications with some known causes and many potential causes. We validate ParKCA in two Genome-wide association studies, one real-world and one simulated dataset. Our results show that ParKCA can infer more causes than existing methods.
142 - Shuo Sun , Erica E. M. Moodie , 2021
Analyses of environmental phenomena often are concerned with understanding unlikely events such as floods, heatwaves, droughts or high concentrations of pollutants. Yet the majority of the causal inference literature has focused on modelling means, r ather than (possibly high) quantiles. We define a general estimator of the population quantile treatment (or exposure) effects (QTE) -- the weighted QTE (WQTE) -- of which the population QTE is a special case, along with a general class of balancing weights incorporating the propensity score. Asymptotic properties of the proposed WQTE estimators are derived. We further propose and compare propensity score regression and two weighted methods based on these balancing weights to understand the causal effect of an exposure on quantiles, allowing for the exposure to be binary, discrete or continuous. Finite sample behavior of the three estimators is studied in simulation. The proposed methods are applied to data taken from the Bavarian Danube catchment area to estimate the 95% QTE of phosphorus on copper concentration in the river.
Heterogeneity in medical data, e.g., from data collected at different sites and with different protocols in a clinical study, is a fundamental hurdle for accurate prediction using machine learning models, as such models often fail to generalize well. This paper leverages a recently proposed normalizing-flow-based method to perform counterfactual inference upon a structural causal model (SCM), in order to achieve harmonization of such data. A causal model is used to model observed effects (brain magnetic resonance imaging data) that result from known confounders (site, gender and age) and exogenous noise variables. Our formulation exploits the bijection induced by flow for the purpose of harmonization. We infer the posterior of exogenous variables, intervene on observations, and draw samples from the resultant SCM to obtain counterfactuals. This approach is evaluated extensively on multiple, large, real-world medical datasets and displayed better cross-domain generalization compared to state-of-the-art algorithms. Further experiments that evaluate the quality of confounder-independent data generated by our model using regression and classification tasks are provided.
297 - Li Ye , Yishi Lin , Hong Xie 2020
A fundamental question for companies with large amount of logged data is: How to use such logged data together with incoming streaming data to make good decisions? Many companies currently make decisions via online A/B tests, but wrong decisions duri ng testing hurt users experiences and cause irreversible damage. A typical alternative is offline causal inference, which analyzes logged data alone to make decisions. However, these decisions are not adaptive to the new incoming data, and so a wrong decision will continuously hurt users experiences. To overcome the aforementioned limitations, we propose a framework to unify offline causal inference algorithms (e.g., weighting, matching) and online learning algorithms (e.g., UCB, LinUCB). We propose novel algorithms and derive bounds on the decision accuracy via the notion of regret. We derive the first upper regret bound for forest-based online bandit algorithms. Experiments on two real datasets show that our algorithms outperform other algorithms that use only logged data or online feedbacks, or algorithms that do not use the data properly.
Constraint-based causal discovery from limited data is a notoriously difficult challenge due to the many borderline independence test decisions. Several approaches to improve the reliability of the predictions by exploiting redundancy in the independ ence information have been proposed recently. Though promising, existing approaches can still be greatly improved in terms of accuracy and scalability. We present a novel method that reduces the combinatorial explosion of the search space by using a more coarse-grained representation of causal information, drastically reducing computation time. Additionally, we propose a method to score causal predictions based on their confidence. Crucially, our implementation also allows one to easily combine observational and interventional data and to incorporate various types of available background knowledge. We prove soundness and asymptotic consistency of our method and demonstrate that it can outperform the state-of-the-art on synthetic data, achieving a speedup of several orders of magnitude. We illustrate its practical feasibility by applying it on a challenging protein data set.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا