ﻻ يوجد ملخص باللغة العربية
Analyses of environmental phenomena often are concerned with understanding unlikely events such as floods, heatwaves, droughts or high concentrations of pollutants. Yet the majority of the causal inference literature has focused on modelling means, rather than (possibly high) quantiles. We define a general estimator of the population quantile treatment (or exposure) effects (QTE) -- the weighted QTE (WQTE) -- of which the population QTE is a special case, along with a general class of balancing weights incorporating the propensity score. Asymptotic properties of the proposed WQTE estimators are derived. We further propose and compare propensity score regression and two weighted methods based on these balancing weights to understand the causal effect of an exposure on quantiles, allowing for the exposure to be binary, discrete or continuous. Finite sample behavior of the three estimators is studied in simulation. The proposed methods are applied to data taken from the Bavarian Danube catchment area to estimate the 95% QTE of phosphorus on copper concentration in the river.
In this paper, we study the estimation and inference of the quantile treatment effect under covariate-adaptive randomization. We propose two estimation methods: (1) the simple quantile regression and (2) the inverse propensity score weighted quantile
Understanding treatment effect heterogeneity in observational studies is of great practical importance to many scientific fields because the same treatment may affect different individuals differently. Quantile regression provides a natural framework
Marginal structural models (MSM) with inverse probability weighting (IPW) are used to estimate causal effects of time-varying treatments, but can result in erratic finite-sample performance when there is low overlap in covariate distributions across
Understanding how treatment effects vary on individual characteristics is critical in the contexts of personalized medicine, personalized advertising and policy design. When the characteristics are of practical interest are only a subset of full cova
We focus on the problem of generalizing a causal effect estimated on a randomized controlled trial (RCT) to a target population described by a set of covariates from observational data. Available methods such as inverse propensity weighting are not d