ﻻ يوجد ملخص باللغة العربية
Consider the extended hull of a weak model set together with its natural shift action. Equip the extended hull with the Mirsky measure, which is a certain natural pattern frequency measure. It is known that the extended hull is a measure-theoretic factor of some group rotation, which is called the underlying torus. Among other results, in the article Periods and factors of weak model sets we showed that the extended hull is isomorphic to a factor group of the torus, where certain periods of the window of the weak model set have been factored out. This was proved for weak model sets having a compact window. In this note, we argue that the same results hold for arbitrary measurable and relatively compact windows. Our arguments crucially rely on Moodys work on uniform distribution in model sets. We also discuss implications for the diffraction of such weak model sets.
The theory of regular model sets is highly developed, but does not cover examples such as the visible lattice points, the k-th power-free integers, or related systems. They belong to the class of weak model sets, where the window may have a boundary
The well-known plastic number substitution gives rise to a ternary inflation tiling of the real line whose inflation factor is the smallest Pisot-Vijayaraghavan number. The corresponding dynamical system has pure point spectrum, and the associated co
In recent years much attention has been enjoyed by topological spaces which are dominated by second countable spaces. The origin of the concept dates back to the 1979 paper of Talagrand in which it was shown that for a compact space X, Cp(X) is domin
We study point sets arising from cut-and-project constructions. An important class is weak model sets, which include squarefree numbers and visible lattice points. For such model sets, we give a non-trivial upper bound on their pattern entropy in ter
The well-known Galvin-Prikry Theorem states that Borel subsets of the Baire space are Ramsey: Given any Borel subset $mathcal{X}subseteq [omega]^{omega}$, where $[omega]^{omega}$ is endowed with the metric topology, each infinite subset $Xsubseteq om