ﻻ يوجد ملخص باللغة العربية
This paper will suggest a new finite element method to find a $P^4$-velocity and a $P^3$-pressure solving incompressible Stokes equations at low cost. The method solves first the decoupled equation for a $P^4$-velocity. Then, using the calculated velocity, a locally calculable $P^3$-pressure will be defined component-wisely. The resulting $P^3$-pressure is analyzed to have the optimal order of convergence. Since the pressure is calculated by local computation only, the chief time cost of the new method is on solving the decoupled equation for the $P^4$-velocity. Besides, the method overcomes the problem of singular vertices or corners.
By supplementing the pressure space for the Taylor-Hood element a triangular element that satisfies continuity over each element is produced. Making a novel extension of the patch argument to prove stability, this element is shown to be globally stab
In this work, we develop a high-order pressure-robust method for the rotation form of the stationary incompressible Navier-Stokes equations. The original idea is to change the velocity test functions in the discretization of trilinear and right hand
We propose an efficient, accurate and robust implicit solver for the incompressible Navier-Stokes equations, based on a DG spatial discretization and on the TR-BDF2 method for time discretization. The effectiveness of the method is demonstrated in a
We study a continuous data assimilation (CDA) algorithm for a velocity-vorticity formulation of the 2D Navier-Stokes equations in two cases: nudging applied to the velocity and vorticity, and nudging applied to the velocity only. We prove that under
We develop a novel iterative solution method for the incompressible Navier-Stokes equations with boundary conditions coupled with reduced models. The iterative algorithm is designed based on the variational multiscale formulation and the generalized-