ﻻ يوجد ملخص باللغة العربية
By supplementing the pressure space for the Taylor-Hood element a triangular element that satisfies continuity over each element is produced. Making a novel extension of the patch argument to prove stability, this element is shown to be globally stable and give optimal rates of convergence on a wide range of triangular grids. This theoretical result is extended in the discussion given in the appendix, showing how optimal convergence rates can be obtained on all grids. Two examples are presented, one illustrating the convergence rates and the other illustrating difficulties with the Taylor-Hood element which are overcome by the element presented here.
This paper will suggest a new finite element method to find a $P^4$-velocity and a $P^3$-pressure solving incompressible Stokes equations at low cost. The method solves first the decoupled equation for a $P^4$-velocity. Then, using the calculated vel
The locally modified finite element method, which is introduced in [Frei, Richter: SINUM 52(2014), p. 2315-2334] is a simple fitted finite element method that is able to resolve weak discontinuities in interface problems. The method is based on a fix
We propose and analyse an augmented mixed finite element method for the Oseen equations written in terms of velocity, vorticity, and pressure with non-constant viscosity and homogeneous Dirichlet boundary condition for the velocity. The weak formulat
A finite element elasticity complex on tetrahedral meshes is devised. The $H^1$ conforming finite element is the smooth finite element developed by Neilan for the velocity field in a discrete Stokes complex. The symmetric div-conforming finite elemen
We propose a new discretization of a mixed stress formulation of the Stokes equations. The velocity $u$ is approximated with $H(operatorname{div})$-conforming finite elements providing exact mass conservation. While many standard methods use $H^1$-co