ترغب بنشر مسار تعليمي؟ اضغط هنا

A Reproducing Kernel Hilbert Space Approach to Functional Calibration of Computer Models

82   0   0.0 ( 0 )
 نشر من قبل Jianhua Huang
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper develops a frequentist solution to the functional calibration problem, where the value of a calibration parameter in a computer model is allowed to vary with the value of control variables in the physical system. The need of functional calibration is motivated by engineering applications where using a constant calibration parameter results in a significant mismatch between outputs from the computer model and the physical experiment. Reproducing kernel Hilbert spaces (RKHS) are used to model the optimal calibration function, defined as the functional relationship between the calibration parameter and control variables that gives the best prediction. This optimal calibration function is estimated through penalized least squares with an RKHS-norm penalty and using physical data. An uncertainty quantification procedure is also developed for such estimates. Theoretical guarantees of the proposed method are provided in terms of prediction consistency and consistency of estimating the optimal calibration function. The proposed method is tested using both real and synthetic data and exhibits more robust performance in prediction and uncertainty quantification than the existing parametric functional calibration method and a state-of-art Bayesian method.

قيم البحث

اقرأ أيضاً

Weighted log-rank tests are arguably the most widely used tests by practitioners for the two-sample problem in the context of right-censored data. Many approaches have been considered to make weighted log-rank tests more robust against a broader fami ly of alternatives, among them, considering linear combinations of weighted log-rank tests, and taking the maximum among a finite collection of them. In this paper, we propose as test statistic the supremum of a collection of (potentially infinite) weight-indexed log-rank tests where the index space is the unit ball in a reproducing kernel Hilbert space (RKHS). By using some desirable properties of RKHSs we provide an exact and simple evaluation of the test statistic and establish connections with previous tests in the literature. Additionally, we show that for a special family of RKHSs, the proposed test is omnibus. We finalise by performing an empirical evaluation of the proposed methodology and show an application to a real data scenario. Our theoretical results are proved using techniques for double integrals with respect to martingales that may be of independent interest.
231 - Tianyu Zhang , Noah Simon 2021
The goal of nonparametric regression is to recover an underlying regression function from noisy observations, under the assumption that the regression function belongs to a pre-specified infinite dimensional function space. In the online setting, whe n the observations come in a stream, it is generally computationally infeasible to refit the whole model repeatedly. There are as of yet no methods that are both computationally efficient and statistically rate-optimal. In this paper, we propose an estimator for online nonparametric regression. Notably, our estimator is an empirical risk minimizer (ERM) in a deterministic linear space, which is quite different from existing methods using random features and functional stochastic gradient. Our theoretical analysis shows that this estimator obtains rate-optimal generalization error when the regression function is known to live in a reproducing kernel Hilbert space. We also show, theoretically and empirically, that the computational expense of our estimator is much lower than other rate-optimal estimators proposed for this online setting.
The geometry of spaces with indefinite inner product, known also as Krein spaces, is a basic tool for developing Operator Theory therein. In the present paper we establish a link between this geometry and the algebraic theory of *-semigroups. It goes via the positive definite functions and related to them reproducing kernel Hilbert spaces. Our concern is in describing properties of elements of the semigroup which determine shift operators which serve as Pontryagin fundamental symmetries
Let a labeled dataset be given with scattered samples and consider the hypothesis of the ground-truth belonging to the reproducing kernel Hilbert space (RKHS) of a known positive-definite kernel. It is known that out-of-sample bounds can be establish ed at unseen input locations, thus limiting the risk associated with learning this function. We show how computing tight, finite-sample uncertainty bounds amounts to solving parametric quadratically constrained linear programs. In our setting, the outputs are assumed to be contaminated by bounded measurement noise that can otherwise originate from any compactly supported distribution. No independence assumptions are made on the available data. Numerical experiments are presented to compare the present results with other closed-form alternatives.
Large renewable energy projects, such as large offshore wind farms, are critical to achieving low-emission targets set by governments. Stochastic computer models allow us to explore future scenarios to aid decision making whilst considering the most relevant uncertainties. Complex stochastic computer models can be prohibitively slow and thus an emulator may be constructed and deployed to allow for efficient computation. We present a novel heteroscedastic Gaussian Process emulator which exploits cheap approximations to a stochastic offshore wind farm simulator. We conduct a probabilistic sensitivity analysis to understand the influence of key parameters in the wind farm simulator which will help us to plan a probability elicitation in the future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا