ﻻ يوجد ملخص باللغة العربية
Weighted log-rank tests are arguably the most widely used tests by practitioners for the two-sample problem in the context of right-censored data. Many approaches have been considered to make weighted log-rank tests more robust against a broader family of alternatives, among them, considering linear combinations of weighted log-rank tests, and taking the maximum among a finite collection of them. In this paper, we propose as test statistic the supremum of a collection of (potentially infinite) weight-indexed log-rank tests where the index space is the unit ball in a reproducing kernel Hilbert space (RKHS). By using some desirable properties of RKHSs we provide an exact and simple evaluation of the test statistic and establish connections with previous tests in the literature. Additionally, we show that for a special family of RKHSs, the proposed test is omnibus. We finalise by performing an empirical evaluation of the proposed methodology and show an application to a real data scenario. Our theoretical results are proved using techniques for double integrals with respect to martingales that may be of independent interest.
We introduce a general non-parametric independence test between right-censored survival times and covariates, which may be multivariate. Our test statistic has a dual interpretation, first in terms of the supremum of a potentially infinite collection
This paper develops a frequentist solution to the functional calibration problem, where the value of a calibration parameter in a computer model is allowed to vary with the value of control variables in the physical system. The need of functional cal
We consider settings in which the data of interest correspond to pairs of ordered times, e.g, the birth times of the first and second child, the times at which a new user creates an account and makes the first purchase on a website, and the entry and
The goal of nonparametric regression is to recover an underlying regression function from noisy observations, under the assumption that the regression function belongs to a pre-specified infinite dimensional function space. In the online setting, whe
The geometry of spaces with indefinite inner product, known also as Krein spaces, is a basic tool for developing Operator Theory therein. In the present paper we establish a link between this geometry and the algebraic theory of *-semigroups. It goes