ﻻ يوجد ملخص باللغة العربية
The goal of nonparametric regression is to recover an underlying regression function from noisy observations, under the assumption that the regression function belongs to a pre-specified infinite dimensional function space. In the online setting, when the observations come in a stream, it is generally computationally infeasible to refit the whole model repeatedly. There are as of yet no methods that are both computationally efficient and statistically rate-optimal. In this paper, we propose an estimator for online nonparametric regression. Notably, our estimator is an empirical risk minimizer (ERM) in a deterministic linear space, which is quite different from existing methods using random features and functional stochastic gradient. Our theoretical analysis shows that this estimator obtains rate-optimal generalization error when the regression function is known to live in a reproducing kernel Hilbert space. We also show, theoretically and empirically, that the computational expense of our estimator is much lower than other rate-optimal estimators proposed for this online setting.
Let $G$ be a locally compact abelian group with a Haar measure, and $Y$ be a measure space. Suppose that $H$ is a reproducing kernel Hilbert space of functions on $Gtimes Y$, such that $H$ is naturally embedded into $L^2(Gtimes Y)$ and is invariant u
We prove two new equivalences of the Feichtinger conjecture that involve reproducing kernel Hilbert spaces. We prove that if for every Hilbert space, contractively contained in the Hardy space, each Bessel sequence of normalized kernel functions can
The Gaussian kernel plays a central role in machine learning, uncertainty quantification and scattered data approximation, but has received relatively little attention from a numerical analysis standpoint. The basic problem of finding an algorithm fo
In this paper, we introduce the notion of reproducing kernel Hilbert spaces for graphs and the Gram matrices associated with them. Our aim is to investigate the Gram matrices of reproducing kernel Hilbert spaces. We provide several bounds on the entr
The geometry of spaces with indefinite inner product, known also as Krein spaces, is a basic tool for developing Operator Theory therein. In the present paper we establish a link between this geometry and the algebraic theory of *-semigroups. It goes