ﻻ يوجد ملخص باللغة العربية
We consider the stochastic electrokinetic flow in a smooth bounded domain $mathcal{D}$, modelled by a Nernst-Planck-Navier-Stokes system with a blocking boundary conditions for ionic species concentrations, perturbed by multiplicative noise. Several results are established in this paper. In both $2d$ and $3d$ cases, we establish the global existence of weak martingale solution which is weak in both PDEs and probability sense, and also the existence and uniqueness of the maximal strong pathwise solution which is strong in PDEs and probability sense. Particularly, we show that the maximal pathwise solution is global one in $2d$ case without the restriction of smallness of initial data.
The Cauchy problem of a multi-dimensional ($dgeqslant 2$) compressible viscous liquid-gas two-phase flow model is concerned in this paper. We investigate the global existence and uniqueness of the strong solution for the initial data close to a stabl
We consider the flow of an upper convected Maxwell fluid in the limit of high Weissenberg and Reynolds number. In this limit, the no-slip condition cannot be imposed on the solutions. We derive equations for the resulting boundary layer and prove the
We present a new proof of well-posedness of stochastic evolution equations in variational form, relying solely on a (nonlinear) infinite-dimensional approximation procedure rather than on classical finite-dimensional projection arguments of Galerkin type.
The free boundary problem for a two-dimensional fluid filtered in porous media is studied. This is known as the one-phase Muskat problem and is mathematically equivalent to the vertical Hele-Shaw problem driven by gravity force. We prove that if the
The skew mean curvature flow is an evolution equation for $d$ dimensional manifolds embedded in $mathbb{R}^{d+2}$ (or more generally, in a Riemannian manifold). It can be viewed as a Schrodinger analogue of the mean curvature flow, or alternatively a