ترغب بنشر مسار تعليمي؟ اضغط هنا

Global well-posedness for the one-phase Muskat problem

71   0   0.0 ( 0 )
 نشر من قبل Francisco Gancedo
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The free boundary problem for a two-dimensional fluid filtered in porous media is studied. This is known as the one-phase Muskat problem and is mathematically equivalent to the vertical Hele-Shaw problem driven by gravity force. We prove that if the initial free boundary is the graph of a periodic Lipschitz function, then there exists a global-in-time Lipschitz solution in the strong $L^infty_t L^2_x$ sense and it is the unique viscosity solution. The proof requires quantitative estimates for layer potentials and pointwise elliptic regularity in Lipschitz domains. This is the first construction of unique global strong solutions for the Muskat problem with initial data of arbitrary size.



قيم البحث

اقرأ أيضاً

The aim of this paper is to establish the $H^1$ global well-posedness for Kirchhoff systems. The new approach to the construction of solutions is based on the asymptotic integrations for strictly hyperbolic systems with time-dependent coefficients. T hese integrations play an important role to setting the subsequent fixed point argument. The existence of solutions for less regular data is discussed, and several examples and applications are presented.
71 - Elena Kopylova 2019
We prove global well-posedness for 3D Dirac equation with a concentrated nonlinearity.
We consider the derivative nonlinear Schrodinger equation in one space dimension, posed both on the line and on the circle. This model is known to be completely integrable and $L^2$-critical with respect to scaling. The first question we discuss is whether ensembles of orbits with $L^2$-equicontinuous initial data remain equicontinuous under evolution. We prove that this is true under the restriction $M(q)=int |q|^2 < 4pi$. We conjecture that this restriction is unnecessary. Further, we prove that the problem is globally well-posed for initial data in $H^{1/6}$ under the same restriction on $M$. Moreover, we show that this restriction would be removed by a successful resolution of our equicontinuity conjecture.
The two-dimensional Zakharov system is shown to have a unique global solution for data without finite energy if the L^2 - norm of the Schrodinger part is small enough. The proof uses a refined I-method originally initiated by Colliander, Keel, Staffi lani, Takaoka and Tao. A polynomial growth bound for the solution is also given.
152 - Chengchun Hao 2008
In this paper, we investigate the one-dimensional derivative nonlinear Schrodinger equations of the form $iu_t-u_{xx}+ilambdaabs{u}^k u_x=0$ with non-zero $lambdain Real$ and any real number $kgs 5$. We establish the local well-posedness of the Cauch y problem with any initial data in $H^{1/2}$ by using the gauge transformation and the Littlewood-Paley decomposition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا