ترغب بنشر مسار تعليمي؟ اضغط هنا

AutoBERT-Zero: Evolving BERT Backbone from Scratch

253   0   0.0 ( 0 )
 نشر من قبل Jiahui Gao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Transformer-based pre-trained language models like BERT and its variants have recently achieved promising performance in various natural language processing (NLP) tasks. However, the conventional paradigm constructs the backbone by purely stacking the manually designed global self-attention layers, introducing inductive bias and thus leading to sub-optimal. In this work, we propose an Operation-Priority Neural Architecture Search (OP-NAS) algorithm to automatically search for promising hybrid backbone architectures. Our well-designed search space (i) contains primitive math operations in the intra-layer level to explore novel attention structures, and (ii) leverages convolution blocks to be the supplementary for attention structure in the inter-layer level to better learn local dependency. We optimize both the search algorithm and evaluation of candidate models to boost the efficiency of our proposed OP-NAS. Specifically, we propose Operation-Priority (OP) evolution strategy to facilitate model search via balancing exploration and exploitation. Furthermore, we design a Bi-branch Weight-Sharing (BIWS) training strategy for fast model evaluation. Extensive experiments show that the searched architecture (named AutoBERT-Zero) significantly outperforms BERT and its variants of different model capacities in various downstream tasks, proving the architectures transfer and generalization abilities. Remarkably, AutoBERT-Zero-base outperforms RoBERTa-base (using much more data) and BERT-large (with much larger model size) by 2.4 and 1.4 higher score on GLUE test set. Code and pre-trained models will be made publicly available.



قيم البحث

اقرأ أيضاً

Generative Adversarial Networks (GANs) enjoy great success at image generation, but have proven difficult to train in the domain of natural language. Challenges with gradient estimation, optimization instability, and mode collapse have lead practitio ners to resort to maximum likelihood pre-training, followed by small amounts of adversarial fine-tuning. The benefits of GAN fine-tuning for language generation are unclear, as the resulting models produce comparable or worse samples than traditional language models. We show it is in fact possible to train a language GAN from scratch -- without maximum likelihood pre-training. We combine existing techniques such as large batch sizes, dense rewards and discriminator regularization to stabilize and improve language GANs. The resulting model, ScratchGAN, performs comparably to maximum likelihood training on EMNLP2017 News and WikiText-103 corpora according to quality and diversity metrics.
We introduce a novel top-down end-to-end formulation of document-level discourse parsing in the Rhetorical Structure Theory (RST) framework. In this formulation, we consider discourse parsing as a sequence of splitting decisions at token boundaries a nd use a seq2seq network to model the splitting decisions. Our framework facilitates discourse parsing from scratch without requiring discourse segmentation as a prerequisite; rather, it yields segmentation as part of the parsing process. Our unified parsing model adopts a beam search to decode the best tree structure by searching through a space of high-scoring trees. With extensive experiments on the standard English RST discourse treebank, we demonstrate that our parser outperforms existing methods by a good margin in both end-to-end parsing and parsing with gold segmentation. More importantly, it does so without using any handcrafted features, making it faster and easily adaptable to new languages and domains.
In this paper, we propose a novel model compression approach to effectively compress BERT by progressive module replacing. Our approach first divides the original BERT into several modules and builds their compact substitutes. Then, we randomly repla ce the original modules with their substitutes to train the compact modules to mimic the behavior of the original modules. We progressively increase the probability of replacement through the training. In this way, our approach brings a deeper level of interaction between the original and compact models. Compared to the previous knowledge distillation approaches for BERT compression, our approach does not introduce any additional loss function. Our approach outperforms existing knowledge distillation approaches on GLUE benchmark, showing a new perspective of model compression.
291 - Hao Li , Tianwen Fu , Jifeng Dai 2021
Significant progress has been achieved in automating the design of various components in deep networks. However, the automatic design of loss functions for generic tasks with various evaluation metrics remains under-investigated. Previous works on ha ndcrafting loss functions heavily rely on human expertise, which limits their extendibility. Meanwhile, existing efforts on searching loss functions mainly focus on specific tasks and particular metrics, with task-specific heuristics. Whether such works can be extended to generic tasks is not verified and questionable. In this paper, we propose AutoLoss-Zero, the first general framework for searching loss functions from scratch for generic tasks. Specifically, we design an elementary search space composed only of primitive mathematical operators to accommodate the heterogeneous tasks and evaluation metrics. A variant of the evolutionary algorithm is employed to discover loss functions in the elementary search space. A loss-rejection protocol and a gradient-equivalence-check strategy are developed so as to improve the search efficiency, which are applicable to generic tasks. Extensive experiments on various computer vision tasks demonstrate that our searched loss functions are on par with or superior to existing loss functions, which generalize well to different datasets and networks. Code shall be released.
In this paper, we formulate a more realistic and difficult problem setup for the intent detection task in natural language understanding, namely Generalized Few-Shot Intent Detection (GFSID). GFSID aims to discriminate a joint label space consisting of both existing intents which have enough labeled data and novel intents which only have a few examples for each class. To approach this problem, we propose a novel model, Conditional Text Generation with BERT (CG-BERT). CG-BERT effectively leverages a large pre-trained language model to generate text conditioned on the intent label. By modeling the utterance distribution with variational inference, CG-BERT can generate diverse utterances for the novel intents even with only a few utterances available. Experimental results show that CG-BERT achieves state-of-the-art performance on the GFSID task with 1-shot and 5-shot settings on two real-world datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا