ترغب بنشر مسار تعليمي؟ اضغط هنا

AutoLoss-Zero: Searching Loss Functions from Scratch for Generic Tasks

292   0   0.0 ( 0 )
 نشر من قبل Jifeng Dai
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Significant progress has been achieved in automating the design of various components in deep networks. However, the automatic design of loss functions for generic tasks with various evaluation metrics remains under-investigated. Previous works on handcrafting loss functions heavily rely on human expertise, which limits their extendibility. Meanwhile, existing efforts on searching loss functions mainly focus on specific tasks and particular metrics, with task-specific heuristics. Whether such works can be extended to generic tasks is not verified and questionable. In this paper, we propose AutoLoss-Zero, the first general framework for searching loss functions from scratch for generic tasks. Specifically, we design an elementary search space composed only of primitive mathematical operators to accommodate the heterogeneous tasks and evaluation metrics. A variant of the evolutionary algorithm is employed to discover loss functions in the elementary search space. A loss-rejection protocol and a gradient-equivalence-check strategy are developed so as to improve the search efficiency, which are applicable to generic tasks. Extensive experiments on various computer vision tasks demonstrate that our searched loss functions are on par with or superior to existing loss functions, which generalize well to different datasets and networks. Code shall be released.



قيم البحث

اقرأ أيضاً

We present a learning to learn approach for automatically constructing white-box classification loss functions that are robust to label noise in the training data. We parameterize a flexible family of loss functions using Taylor polynomials, and appl y evolutionary strategies to search for noise-robust losses in this space. To learn re-usable loss functions that can apply to new tasks, our fitness function scores their performance in aggregate across a range of training dataset and architecture combinations. The resulting white-box loss provides a simple and fast plug-and-play module that enables effective noise-robust learning in diverse downstream tasks, without requiring a special training procedure or network architecture. The efficacy of our method is demonstrated on a variety of datasets with both synthetic and real label noise, where we compare favourably to previous work.
252 - Jiahui Gao , Hang Xu , Han shi 2021
Transformer-based pre-trained language models like BERT and its variants have recently achieved promising performance in various natural language processing (NLP) tasks. However, the conventional paradigm constructs the backbone by purely stacking th e manually designed global self-attention layers, introducing inductive bias and thus leading to sub-optimal. In this work, we propose an Operation-Priority Neural Architecture Search (OP-NAS) algorithm to automatically search for promising hybrid backbone architectures. Our well-designed search space (i) contains primitive math operations in the intra-layer level to explore novel attention structures, and (ii) leverages convolution blocks to be the supplementary for attention structure in the inter-layer level to better learn local dependency. We optimize both the search algorithm and evaluation of candidate models to boost the efficiency of our proposed OP-NAS. Specifically, we propose Operation-Priority (OP) evolution strategy to facilitate model search via balancing exploration and exploitation. Furthermore, we design a Bi-branch Weight-Sharing (BIWS) training strategy for fast model evaluation. Extensive experiments show that the searched architecture (named AutoBERT-Zero) significantly outperforms BERT and its variants of different model capacities in various downstream tasks, proving the architectures transfer and generalization abilities. Remarkably, AutoBERT-Zero-base outperforms RoBERTa-base (using much more data) and BERT-large (with much larger model size) by 2.4 and 1.4 higher score on GLUE test set. Code and pre-trained models will be made publicly available.
We propose Scheduled Auxiliary Control (SAC-X), a new learning paradigm in the context of Reinforcement Learning (RL). SAC-X enables learning of complex behaviors - from scratch - in the presence of multiple sparse reward signals. To this end, the ag ent is equipped with a set of general auxiliary tasks, that it attempts to learn simultaneously via off-policy RL. The key idea behind our method is that active (learned) scheduling and execution of auxiliary policies allows the agent to efficiently explore its environment - enabling it to excel at sparse reward RL. Our experiments in several challenging robotic manipulation settings demonstrate the power of our approach.
Designing an effective loss function plays a crucial role in training deep recommender systems. Most existing works often leverage a predefined and fixed loss function that could lead to suboptimal recommendation quality and training efficiency. Some recent efforts rely on exhaustively or manually searched weights to fuse a group of candidate loss functions, which is exceptionally costly in computation and time. They also neglect the various convergence behaviors of different data examples. In this work, we propose an AutoLoss framework that can automatically and adaptively search for the appropriate loss function from a set of candidates. To be specific, we develop a novel controller network, which can dynamically adjust the loss probabilities in a differentiable manner. Unlike existing algorithms, the proposed controller can adaptively generate the loss probabilities for different data examples according to their varied convergence behaviors. Such design improves the models generalizability and transferability between deep recommender systems and datasets. We evaluate the proposed framework on two benchmark datasets. The results show that AutoLoss outperforms representative baselines. Further experiments have been conducted to deepen our understandings of AutoLoss, including its transferability, components and training efficiency.
Triplet loss function is one of the options that can significantly improve the accuracy of the One-shot Learning tasks. Starting from 2015, many projects use Siamese networks and this kind of loss for face recognition and object classification. In ou r research, we focused on two tasks related to vegetation. The first one is plant disease detection on 25 classes of five crops (grape, cotton, wheat, cucumbers, and corn). This task is motivated because harvest losses due to diseases is a serious problem for both large farming structures and rural families. The second task is the identification of moss species (5 classes). Mosses are natural bioaccumulators of pollutants; therefore, they are used in environmental monitoring programs. The identification of moss species is an important step in the sample preprocessing. In both tasks, we used self-collected image databases. We tried several deep learning architectures and approaches. Our Siamese network architecture with a triplet loss function and MobileNetV2 as a base network showed the most impressive results in both above-mentioned tasks. The average accuracy for plant disease detection amounted to over 97.8% and 97.6% for moss species classification.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا