ﻻ يوجد ملخص باللغة العربية
We theoretically propose a family of structurally stable monolayer halide perovskite A$_3$B$_2$C$_9$ (A=Rb, Cs; B=Pd, Pt; C=Cl, Br) with easy magnetization planes. These materials are all half-metals with large spin gaps over 1~eV accompanying with a single spin Dirac point located at K point. When the spin-orbit coupling is switched on, we further show that Rb$_3$Pt$_2$Cl$_9$, Cs$_3$Pd$_2$Cl$_9$, and Cs$_3$Pt$_2$Cl$_9$ monolayers can open up large band gaps from 63 to 103 meV to harbor quantum anomalous Hall effect with Chern numbers of $mathcal{C}=pm1$, whenever the mirror symmetry is broken by the in-plane magnetization. The corresponding Berezinskii-Kosterlitz-Thouless transition temperatures are over 248~K. Our findings provide a potentially realizable platform to explore quantum anomalous Hall effect and spintronics at high temperatures.
The observation of the anomalous quantum Hall effect in exfoliated graphene flakes triggered an explosion of interest in graphene. It was however not observed in high quality epitaxial graphene multilayers grown on silicon carbide substrates. The qua
Even at the lowest accessible temperatures, measurements of the quantum anomalous Hall (QAH) effect have indicated the presence of parasitic dissipative conduction channels. There is no consensus whether parasitic conduction is related to processes i
In the fractional quantum Hall effect regime we measure diagonal ($rho_{xx}$) and Hall ($rho_{xy}$) magnetoresistivity tensor components of two-dimensional electron system (2DES) in gated GaAs/Al$_{x}$Ga$_{1-x}$As heterojunctions, together with capac
We theoretically investigate the localization mechanism of quantum anomalous Hall Effect (QAHE) with large Chern numbers $mathcal{C}$ in bilayer graphene and magnetic topological insulator thin films, by applying either nonmagnetic or spin-flip (magn
Magnetotransport measurements are presented on paramagnetic (Hg,Mn)Te quantum wells (QWs) with an inverted band structure. Gate-voltage controlled density dependent measurements reveal an unusual behavior in the transition regime from n- to p-type co