ﻻ يوجد ملخص باللغة العربية
We theoretically investigate the localization mechanism of quantum anomalous Hall Effect (QAHE) with large Chern numbers $mathcal{C}$ in bilayer graphene and magnetic topological insulator thin films, by applying either nonmagnetic or spin-flip (magnetic) disorders. We show that, in the presence of nonmagnetic disorders, the QAHEs in both two systems become Anderson insulating as expected when the disorder strength is large enough. However, in the presence of spin-flip disorders, the localization mechanisms in these two host materials are completely distinct. For the ferromagnetic bilayer graphene with Rashba spin-orbit coupling, the QAHE with $mathcal{C}=4$ firstly enters a Berry-curvature mediated metallic phase, and then becomes localized to be Anderson insulator along with the increasing of disorder strength. While in magnetic topological insulator thin films, the QAHE with $mathcal{C=N}$ firstly enters a Berry-curvature mediated metallic phase, then transitions to another QAHE with ${mathcal{C}}={mathcal{N}}-1$ along with the increasing of disorder strength, and is finally localized to the Anderson insulator after ${mathcal{N}}-1$ cycling between the QAHE and metallic phases. For the unusual findings in the latter system, by analyzing the Berry curvature evolution, it is known that the phase transitions originate from the exchange of Berry curvature carried by conduction (valence) bands. At the end, we provide a phenomenological picture related to the topological charges to help understand the underlying physical origins of the two different phase transition mechanisms.
The interplay between interaction and disorder-induced localization is of fundamental interest. This article addresses localization physics in the fractional quantum Hall state, where both interaction and disorder have nonperturbative consequences. W
The quantum anomalous Hall system with Chern number 2 can be destroyed by sufficiently strong disorder. During its process towards localization, it was found that the electronic states will be directly localized to an Anderson insulator (with Chern n
The quantum anomalous Hall (QAH) state is a two-dimensional topological insulating state that has quantized Hall resistance of h/Ce2 and vanishing longitudinal resistance under zero magnetic field, where C is called the Chern number. The QAH effect h
In recent years, it has been shown that Berry curvature monopoles and dipoles play essential roles in the anomalous Hall effect and the nonlinear Hall effect respectively. In this work, we demonstrate that Berry curvature multipoles (the higher momen
Due to the potential applications in the low-power-consumption spintronic devices, the quantum anomalous Hall effect (QAHE) has attracted tremendous attention in past decades. However, up to now, QAHE was only observed experimentally in topological i