ﻻ يوجد ملخص باللغة العربية
Dempster-Shafer Theory (DST) generalizes Bayesian probability theory, offering useful additional information, but suffers from a high computational burden. A lot of work has been done to reduce the complexity of computations used in information fusion with Dempsters rule. The main approaches exploit either the structure of Boolean lattices or the information contained in belief sources. Each has its merits depending on the situation. In this paper, we propose sequences of graphs for the computation of the zeta and Mobius transformations that optimally exploit both the structure of distributive semilattices and the information contained in belief sources. We call them the Efficient Mobius Transformations (EMT). We show that the complexity of the EMT is always inferior to the complexity of algorithms that consider the whole lattice, such as the Fast Mobius Transform (FMT) for all DST transformations. We then explain how to use them to fuse two belief sources. More generally, our EMTs apply to any function in any finite distributive lattice, focusing on a meet-closed or join-closed subset. This article extends our work published at the international conference on Scalable Uncertainty Management (SUM). It clarifies it, brings some minor corrections and provides implementation details such as data structures and algorithms applied to DST.
Dempster-Shafer Theory (DST) generalizes Bayesian probability theory, offering useful additional information, but suffers from a much higher computational burden. A lot of work has been done to reduce the time complexity of information fusion with De
The article provides a review of the publications on the current trends and developments in Dempster-Shafer theory and its different applications in science, engineering, and technologies. The review took account of the following provisions with a fo
In analogy with the regularity lemma of Szemeredi, regularity lemmas for polynomials shown by Green and Tao (Contrib. Discrete Math. 2009) and by Kaufman and Lovett (FOCS 2008) modify a given collection of polynomials calF = {P_1,...,P_m} to a new co
Equality and disjointness are two of the most studied problems in communication complexity. They have been studied for both classical and also quantum communication and for various models and modes of communication. Buhrman et al. [Buh98] proved that
We introduce polyhedra circuits. Each polyhedra circuit characterizes a geometric region in $mathbb{R}^d$. They can be applied to represent a rich class of geometric objects, which include all polyhedra and the union of a finite number of polyhedra.