ﻻ يوجد ملخص باللغة العربية
We introduce polyhedra circuits. Each polyhedra circuit characterizes a geometric region in $mathbb{R}^d$. They can be applied to represent a rich class of geometric objects, which include all polyhedra and the union of a finite number of polyhedra. They can be used to approximate a large class of $d$-dimensional manifolds in $mathbb{R}^d$. Barvinok developed polynomial time algorithms to compute the volume of a rational polyhedra, and to count the number of lattice points in a rational polyhedra in a fixed dimensional space $mathbb{R}^d$ with a fix $d$. Define $T_V(d,, n)$ be the polynomial time in $n$ to compute the volume of one rational polyhedra, $T_L(d,, n)$ be the polynomial time in $n$ to count the number of lattice points in one rational polyhedra with $d$ be a fixed dimensional number, $T_I(d,, n)$ be the polynomial time in $n$ to solve integer linear programming time with $d$ be the fixed dimensional number, where $n$ is the total number of linear inequalities from input polyhedra. We develop algorithms to count the number of lattice points in the geometric region determined by a polyhedra circuit in $Oleft(ndcdot r_d(n)cdot T_V(d,, n)right)$ time and to compute the volume of the geometric region determined by a polyhedra circuit in $Oleft(ncdot r_d(n)cdot T_I(d,, n)+r_d(n)T_L(d,, n)right)$ time, where $n$ is the number of input linear inequalities, $d$ is number of variables and $r_d(n)$ be the maximal number of regions that $n$ linear inequalities with $d$ variables partition $mathbb{R}^d$.
A convex polyhedron $P$ is $k$-equiprojective if all of its orthogonal projections, i.e., shadows, except those parallel to the faces of $P$ are $k$-gon for some fixed value of $k$. Since 1968, it is an open problem to construct all equiprojective po
In this paper I present several novel, efficient, algorithmic techniques for solving some multidimensional geometric data management and analysis problems. The techniques are based on several data structures from computational geometry (e.g. segment
This is the arXiv index for the electronic proceedings of GD 2019, which contains the peer-reviewed and revised accepted papers with an optional appendix. Proceedings (without appendices) are also to be published by Springer in the Lecture Notes in Computer Science series.
This is the arXiv index for the electronic proceedings of GD 2021, which contains the peer-reviewed and revised accepted papers with an optional appendix. Proceedings (without appendices) are also to be published by Springer in the Lecture Notes in Computer Science series.
Starting with the unsolved Durers problem of edge-unfolding a convex polyhedron to a net, we specialize and generalize (a) the types of cuts permitted, and (b) the polyhedra shapes, to highlight both advances established and which problems remain open.