ﻻ يوجد ملخص باللغة العربية
Equality and disjointness are two of the most studied problems in communication complexity. They have been studied for both classical and also quantum communication and for various models and modes of communication. Buhrman et al. [Buh98] proved that the exact quantum communication complexity for a promise version of the equality problem is ${bf O}(log {n})$ while the classical deterministic communication complexity is $n+1$ for two-way communication, which was the first impressively large (exponential) gap between quantum and classical (deterministic and probabilistic) communication complexity. If an error is tolerated, both quantum and probabilistic communication complexities for equality are ${bf O}(log {n})$. However, even if an error is tolerated, the gaps between quantum (probabilistic) and deterministic complexity are not larger than quadratic for the disjointness problem. It is therefore interesting to ask whether there are some promis
In this paper, we study reversibility of one-dimensional(1D) linear cellular automata(LCA) under null boundary condition, whose core problems have been divided into two main parts: calculating the period of reversibility and verifying the reversibili
The concept of promise problems was introduced and started to be systematically explored by Even, Selman, Yacobi, Goldreich, and other scholars. It has been argued that promise problems should be seen as partial decision problems and as such that the
This talk advocates intrinsic universality as a notion to identify simple cellular automata with complex computational behavior. After an historical introduction and proper definitions of intrinsic universality, which is discussed with respect to Tur
We study the computational complexity of approximating the 2->q norm of linear operators (defined as ||A||_{2->q} = sup_v ||Av||_q/||v||_2), as well as connections between this question and issues arising in quantum information theory and the study o
We study the communication complexity of computing functions $F:{0,1}^ntimes {0,1}^n rightarrow {0,1}$ in the memoryless communication model. Here, Alice is given $xin {0,1}^n$, Bob is given $yin {0,1}^n$ and their goal is to compute F(x,y) subject t