ﻻ يوجد ملخص باللغة العربية
Spin-orbit coupling (SOC), the core of numerous condensed-matter phenomena such as nontrivial band gap, magnetocrystalline anisotropy, etc, is generally considered to be appreciable only in heavy elements, detrimental to the synthetization and application of functional materials. Therefore, amplifying the SOC effect in light elements is of great importance. Here, focusing on 3d and 4d systems, we demonstrate that the interplay between crystal symmetry and electron correlation can dramatically enhance the SOC effect in certain partially occupied orbital multiplets, through the self-consistently reinforced orbital polarization as a pivot. We then provide design principles and comprehensive databases, in which we list all the Wyckoff positions and site symmetries, in all two-dimensional (2D) and three-dimensional crystals that potentially have such enhanced SOC effect. As an important demonstration, we predict nine material candidates from our selected 2D material pool as high-temperature quantum anomalous Hall insulators with large nontrivial band gaps of hundreds of meV. Our work provides an efficient and straightforward way to predict promising SOC-active materials, releasing the burden of requiring heavy elements for next-generation spin-orbitronic materials and devices.
Symmetry formulated by group theory plays an essential role with respect to the laws of nature, from fundamental particles to condensed matter systems. Here, by combining symmetry analysis and tight-binding model calculations, we elucidate that the c
The control of spins and spin to charge conversion in organics requires understanding the molecular spin-orbit coupling (SOC), and a means to tune its strength. However, quantifying SOC strengths indirectly through spin relaxation effects has proven
An electric current in the presence of spin-orbit coupling can generate a spin accumulation that exerts torques on a nearby magnetization. We demonstrate that, even in the absence of materials with strong bulk spin-orbit coupling, a torque can arise
Effective spin mixing conductance (ESMC) across the nonmagnetic metal (NM)/ferromagnet interface, spin Hall conductivity (SHC) and spin diffusion length (SDL) in the NM layer govern the functionality and performance of pure spin current devices with
Spin-orbit coupling (SOC) is essential in understanding the properties of 5d transition metal compounds, whose SOC value is large and almost comparable to other key parameters. Over the past few years, there have been numerous studies on the SOC-driv