ترغب بنشر مسار تعليمي؟ اضغط هنا

Tuning the effective spin-orbit coupling in molecular semiconductors

66   0   0.0 ( 0 )
 نشر من قبل Erik R. McNellis
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The control of spins and spin to charge conversion in organics requires understanding the molecular spin-orbit coupling (SOC), and a means to tune its strength. However, quantifying SOC strengths indirectly through spin relaxation effects has proven diffi- cult due to competing relaxation mechanisms. Here we present a systematic study of the g-tensor shift in molecular semiconductors and link it directly to the SOC strength in a series of high mobility molecular semiconductors with strong potential for future devices. The results demonstrate a rich variability of the molecular g-shifts with the effective SOC, depending on subtle aspects of molecular composition and structure. We correlate the above g -shifts to spin-lattice relaxation times over four orders of magnitude, from 200 {mu}s to 0.15 {mu}s, for isolated molecules in solution and relate our findings for isolated molecules in solution to the spin relaxation mechanisms that are likely to be relevant in solid state systems.



قيم البحث

اقرأ أيضاً

The tunability of high-mobility organic semi-conductors (OSCs) holds great promise for molecular spintronics. In this study, we show this extreme variability - and therefore potential tunability - of the molecular gyromagnetic coupling (g-) tensor wi th respect to the geometric and electronic structure in a much studied class of OSCs. Composed of a structural theme of phenyl- and chalcogenophene (group XVI element containing, five-membered) rings and alkyl functional groups, this class forms the basis of several intensely studied high-mobility polymers and molecular OSCs. We show how in this class the g-tensor shifts, $Delta g$, are determined by the effective molecular spin-orbit coupling (SOC), defined by the overlap of the atomic spin-density and the heavy atoms in the polymers. We explain the dramatic variations in SOC with molecular geometry, chemical composition, functionalization, and charge life-time using a first-principles theoretical model based on atomic spin populations. Our approach gives a guide to tuning the magnetic response of these OSCs by chemical synthesis.
Heavy metals are key to spintronics because of their high spin-orbit coupling (SOC) leading to efficient spin conversion and strong magnetic interactions. When C60 is deposited on Pt, the molecular interface is metallised and the spin Hall angle in Y IG/Pt increased, leading to an enhancement of up to 600% in the spin Hall magnetoresistance and 700% for the anisotropic magnetoresistance. This correlates with Density Functional Theory simulations showing changes of 0.46 eV/C60 in the SOC of Pt. This effect opens the possibility of gating the molecular hybridisation and SOC of metals.
140 - Jiayu Li , Qiushi Yao , Lin Wu 2021
Spin-orbit coupling (SOC), the core of numerous condensed-matter phenomena such as nontrivial band gap, magnetocrystalline anisotropy, etc, is generally considered to be appreciable only in heavy elements, detrimental to the synthetization and applic ation of functional materials. Therefore, amplifying the SOC effect in light elements is of great importance. Here, focusing on 3d and 4d systems, we demonstrate that the interplay between crystal symmetry and electron correlation can dramatically enhance the SOC effect in certain partially occupied orbital multiplets, through the self-consistently reinforced orbital polarization as a pivot. We then provide design principles and comprehensive databases, in which we list all the Wyckoff positions and site symmetries, in all two-dimensional (2D) and three-dimensional crystals that potentially have such enhanced SOC effect. As an important demonstration, we predict nine material candidates from our selected 2D material pool as high-temperature quantum anomalous Hall insulators with large nontrivial band gaps of hundreds of meV. Our work provides an efficient and straightforward way to predict promising SOC-active materials, releasing the burden of requiring heavy elements for next-generation spin-orbitronic materials and devices.
Van der Waals (VdW) materials have opened new directions in the study of low dimensional magnetism. A largely unexplored arena is the intrinsic tuning of VdW magnets toward new ground-states. The chromium trihalides provided the first such example wi th a change of inter-layer magnetic coupling emerging upon exfoliation. Here, we take a different approach to engineer new ground-states, not by exfoliation, but by tuning the spin-orbit coupling (SOC) of the non-magnetic ligand atoms (Cl,Br,I). We synthesize a three-halide series, CrCl$_{3-x-y}$Br$_{x}$I$_{y}$, and map their magnetic properties as a function of Cl, Br, and I content. The resulting triangular phase diagrams unveil a frustrated regime near CrCl$_{3}$. First-principles calculations confirm that the frustration is driven by a competition between the chromium and halide SOCs. Furthermore, we reveal a field-induced change of inter-layer coupling in the bulk of CrCl$_{3-x-y}$Br$_{x}$I$_{y}$ crystals at the same field as in the exfoliation experiments.
Spin-orbit coupling (SOC) is essential in understanding the properties of 5d transition metal compounds, whose SOC value is large and almost comparable to other key parameters. Over the past few years, there have been numerous studies on the SOC-driv en effects of the electronic bands, magnetism, and spin-orbit entanglement for those materials with a large SOC. However, it is less studied and remains an unsolved problem in how the SOC affects the lattice dynamics. We, therefore, measured the phonon spectra of 5d pyrochlore Cd2Os2O7 over the full Brillouin zone to address the question by using inelastic x-ray scattering (IXS). Our main finding is a visible mode-dependence in the phonon spectra, measured across the metal-insulator transition at 227 K. We examined the SOC strength dependence of the lattice dynamics and its spin-phonon (SP) coupling, with first-principle calculations. Our experimental data taken at 100 K are in good agreement with the theoretical results obtained with the optimized U = 2.0 eV with SOC. By scaling the SOC strength and the U value in the DFT calculations, we demonstrate that SOC is more relevant than U to explaining the observed mode-dependent phonon energy shifts with temperature. Furthermore, the temperature dependence of the phonon energy can be effectively described by scaling SOC. Our work provides clear evidence of SOC producing a non-negligible and essential effect on the lattice dynamics of Cd2Os2O7 and its SP coupling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا