ترغب بنشر مسار تعليمي؟ اضغط هنا

The compact interface property for the stochastic heat equation with seed bank

90   0   0.0 ( 0 )
 نشر من قبل Florian Nie
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Florian Nie




اسأل ChatGPT حول البحث

We investigate the compact interface property in a recently introduced variant of the stochastic heat equation that incorporates dormancy, or equivalently seed banks. There individuals can enter a dormant state during which they are no longer subject to spatial dispersal and genetic drift. This models a state of low metabolic activity as found in microbial species. Mathematically, one obtains a memory effect since mass accumulated by the active population will be retained for all times in the seed bank. This raises the question whether the introduction of a seed bank into the system leads to a qualitatively different behaviour of a possible interface. Here, we aim to show that nevertheless in the stochastic heat equation with seed bank compact interfaces are retained through all times in both the active and dormant population. We use duality and a comparison argument with partial functional differential equations to tackle technical difficulties that emerge due to the lack of the martingale property of our solutions which was crucial in the classical non seed bank case.

قيم البحث

اقرأ أيضاً

We introduce a new class of stochastic partial differential equations (SPDEs) with seed bank modeling the spread of a beneficial allele in a spatial population where individuals may switch between an active and a dormant state. Incorporating dormancy and the resulting seed bank leads to a two-type coupled system of equations with migration between both states. We first discuss existence and uniqueness of seed bank SPDEs and provide an equivalent delay representation that allows a clear interpretation of the age structure in the seed bank component. The delay representation will also be crucial in the proofs. Further, we show that the seed bank SPDEs give rise to an interesting class of on/off moment duals. In particular, in the special case of the F-KPP Equation with seed bank, the moment dual is given by an on/off-branching Brownian motion. This system differs from a classical branching Brownian motion in the sense that independently for all individuals, motion and branching may be switched off for an exponential amount of time after which they get switched on again. Here, as an application of our duality, we show that the spread of a beneficial allele, which in the classical F-KPP Equation, started from a Heaviside intial condition, evolves as a pulled traveling wave with speed $sqrt{2}$, is slowed down significantly in the corresponding seed bank F-KPP model. In fact, by computing bounds on the position of the rightmost particle in the dual on/off-branching Brownian motion, we obtain an upper bound for the speed of propagation of the beneficial allele given by $sqrt{sqrt{5}-1}approx 1.111$ under unit switching rates. This shows that seed banks will indeed slow down fitness waves and preserve genetic variability, in line with intuitive reasoning from population genetics and ecology.
We consider a family of nonlinear stochastic heat equations of the form $partial_t u=mathcal{L}u + sigma(u)dot{W}$, where $dot{W}$ denotes space-time white noise, $mathcal{L}$ the generator of a symmetric Levy process on $R$, and $sigma$ is Lipschitz continuous and zero at 0. We show that this stochastic PDE has a random-field solution for every finite initial measure $u_0$. Tight a priori bounds on the moments of the solution are also obtained. In the particular case that $mathcal{L}f=cf$ for some $c>0$, we prove that if $u_0$ is a finite measure of compact support, then the solution is with probability one a bounded function for all times $t>0$.
We consider the stochastic heat equation with a multiplicative white noise forcing term under standard intermitency conditions. The main finding of this paper is that, under mild regularity hypotheses, the a.s.-boundedness of the solution $xmapsto u( t,,x)$ can be characterized generically by the decay rate, at $pminfty$, of the initial function $u_0$. More specifically, we prove that there are 3 generic boundedness regimes, depending on the numerical value of $Lambda:= lim_{|x|toinfty} |log u_0(x)|/(log|x|)^{2/3}$.
This paper studies the nonlinear one-dimensional stochastic heat equation driven by a Gaussian noise which is white in time and which has the covariance of a fractional Brownian motion with Hurst parameter 1/4textless{}Htextless{}1/2 in the space var iable. The existence and uniqueness of the solution u are proved assuming the nonlinear coefficient is differentiable with a Lipschitz derivative and vanishes at 0. In the case of a multiplicative noise, that is the linear equation, we derive the Wiener chaos expansion of the solution and a Feynman-Kac formula for the moments of the solution. These results allow us to establish sharp lower and upper asymptotic bounds for the moments of the solution.
We investigate various aspects of the (biallelic) Wright-Fisher diffusion with seed bank in conjunction with and contrast to the two-island model analysed e.g. in Kermany, Zhou and Hickey, 2008, and Nath and Griffiths, 1993, including moments, statio nary distribution and reversibility, for which our main tool is duality. Further, we show that the Wright-Fisher diffusion with seed bank can be reformulated as a one-dimensional stochastic delay differential equation, providing an elegant interpretation of the age structure in the seed bank also forward in time in the spirit of Kaj, Krone and Lascoux, 2001. We also provide a complete boundary classification for this two-dimensional SDE using martingale-based reasoning known as McKeans argument.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا