ﻻ يوجد ملخص باللغة العربية
We consider a family of nonlinear stochastic heat equations of the form $partial_t u=mathcal{L}u + sigma(u)dot{W}$, where $dot{W}$ denotes space-time white noise, $mathcal{L}$ the generator of a symmetric Levy process on $R$, and $sigma$ is Lipschitz continuous and zero at 0. We show that this stochastic PDE has a random-field solution for every finite initial measure $u_0$. Tight a priori bounds on the moments of the solution are also obtained. In the particular case that $mathcal{L}f=cf$ for some $c>0$, we prove that if $u_0$ is a finite measure of compact support, then the solution is with probability one a bounded function for all times $t>0$.
The Initial-Boundary Value Problem for the heat equation is solved by using a new algorithm based on a random walk on heat balls. Even if it represents a sophisticated generalization of the Walk on Spheres (WOS) algorithm introduced to solve the Diri
The solution of Kardar-Parisi-Zhang equation (KPZ equation) is solved formally via Cole-Hopf transformation $h=log u$, where $u$ is the solution of multiplicative stochastic heat equation(SHE). In earlier works by Chatterjee and Dunlap, Caravenna, Su
We consider the stochastic heat equation with a multiplicative white noise forcing term under standard intermitency conditions. The main finding of this paper is that, under mild regularity hypotheses, the a.s.-boundedness of the solution $xmapsto u(
We investigate the compact interface property in a recently introduced variant of the stochastic heat equation that incorporates dormancy, or equivalently seed banks. There individuals can enter a dormant state during which they are no longer subject
Consider the stochastic heat equation $partial_t u = (frac{varkappa}{2})Delta u+sigma(u)dot{F}$, where the solution $u:=u_t(x)$ is indexed by $(t,x)in (0, infty)timesR^d$, and $dot{F}$ is a centered Gaussian noise that is white in time and has spatia