ﻻ يوجد ملخص باللغة العربية
This paper studies the nonlinear one-dimensional stochastic heat equation driven by a Gaussian noise which is white in time and which has the covariance of a fractional Brownian motion with Hurst parameter 1/4textless{}Htextless{}1/2 in the space variable. The existence and uniqueness of the solution u are proved assuming the nonlinear coefficient is differentiable with a Lipschitz derivative and vanishes at 0. In the case of a multiplicative noise, that is the linear equation, we derive the Wiener chaos expansion of the solution and a Feynman-Kac formula for the moments of the solution. These results allow us to establish sharp lower and upper asymptotic bounds for the moments of the solution.
In this note we consider the parabolic Anderson model in one dimension with time-independent fractional noise $dot{W}$ in space. We consider the case $H<frac{1}{2}$ and get existence and uniqueness of solution. In order to find the quenched asymptoti
We study a full discretization scheme for the stochastic linear heat equation begin{equation*}begin{cases}partial_t langlePsirangle = Delta langlePsirangle +dot{B}, , quad tin [0,1], xin mathbb{R}, langlePsirangle_0=0, ,end{cases}end{equation*} when
We derive consistent and asymptotically normal estimators for the drift and volatility parameters of the stochastic heat equation driven by an additive space-only white noise when the solution is sampled discretely in the physical domain. We consider
We consider a family of nonlinear stochastic heat equations of the form $partial_t u=mathcal{L}u + sigma(u)dot{W}$, where $dot{W}$ denotes space-time white noise, $mathcal{L}$ the generator of a symmetric Levy process on $R$, and $sigma$ is Lipschitz
We consider the stochastic heat equation with a multiplicative white noise forcing term under standard intermitency conditions. The main finding of this paper is that, under mild regularity hypotheses, the a.s.-boundedness of the solution $xmapsto u(