ﻻ يوجد ملخص باللغة العربية
We present an experimental study on our first generation of custom-developed arrayed waveguide gratings (AWG) on silica platform for spectroscopic applications in near-infrared astronomy. We provide a comprehensive description of the design, numerical simulation and characterization of several AWG devices aimed at spectral resolving powers of 15,000 - 60,000 in the astronomical H-band. We evaluate the spectral characteristics of the fabricated devices in terms of insertion loss and estimated spectral resolving power and compare the results with numerical simulations. We estimate resolving powers of up to 18,900 from the output channel 3-dB transmission bandwidth. Based on the first characterization results, we select two candidate AWGs for further processing by removal of the output waveguide array and polishing the output facet to optical quality with the goal of integration as the primary diffractive element in a cross-dispersed spectrograph. We further study the imaging properties of the processed AWGs with regards to spectral resolution in direct imaging mode, geometry-related defocus aberration, and polarization sensitivity of the spectral image. We identify phase error control, birefringence control, and aberration suppression as the three key areas of future research and development in the field of high-resolution AWG-based spectroscopy in astronomy.
Integrated photonic spectrographs offer an avenue to extreme miniaturization of astronomical instruments, which would greatly benefit extremely large telescopes and future space missions. These devices first require optimization for astronomical appl
Magnetooptical properties of magnetic photonic crystals have been investigated in the view of their possible applications for the modern integrated-optics devices. A transfer matrices formalism was expanded for the case of oblique light incidence on
Present telescopes and future extremely large telescopes make use of fiber-fed spectrographs to observe at optical and infrared wavelengths. The use of fibers largely simplifies the interfacing of the spectrograph to the telescope. At a high spectral
This article reports the advances on the development of mid-infrared integrated optics for stellar interferometry. The devices are fabricated by laser writing techniques on chalcogenide glasses. Laboratory characterizaton is reported and analyzed.
Valley pseudospin, a new degree of freedom in photonic lattices, provides an intriguing way to manipulate photons and enhance the robustness of optical networks. Here we experimentally demonstrated topological waveguiding, refracting, resonating, and