ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological photonic integrated circuits based on valley kink states

380   0   0.0 ( 0 )
 نشر من قبل Jingwen Ma
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Valley pseudospin, a new degree of freedom in photonic lattices, provides an intriguing way to manipulate photons and enhance the robustness of optical networks. Here we experimentally demonstrated topological waveguiding, refracting, resonating, and routing of valley-polarized photons in integrated circuits. Specifically, we show that at the domain wall between photonic crystals of different topological valley phases, there exists a topologically protected valley kink state that is backscattering-free at sharp bends and terminals. We further harnessed these valley kink states for constructing high-Q topological photonic crystal cavities with tortuously shaped cavity geometries. We also demonstrated a novel optical routing scheme at an intersection of multiple valley kink states, where light splits counterintuitively due to the valley pseudospin of photons. These results will not only lead to robust optical communication and signal processing, but also open the door for fundamental research of topological photonics in areas such as lasing, quantum photon-pair generation, and optomechanics.



قيم البحث

اقرأ أيضاً

Extensive researches have revealed that valley, a binary degree of freedom (DOF), can be an excellent candidate of information carrier. Recently, valley DOF has been introduced into photonic systems, and several valley-Hall photonic topological insul ators (PTIs) have been experimentally demonstrated. However, in the previous valley-Hall PTIs, topological kink states only work at a single frequency band, which limits potential applications in multiband waveguides, filters, communications, and so on. To overcome this challenge, here we experimentally demonstrate a valley-Hall PTI, where the topological kink states exist at two separated frequency bands, in a microwave substrate-integrated circuitry. Both the simulated and experimental results demonstrate the dual-band valley-Hall topological kink states are robust against the sharp bends of the internal domain wall with negligible inter-valley scattering. Our work may pave the way for multi-channel substrate-integrated photonic devices with high efficiency and high capacity for information communications and processing.
In this paper, we present a novel concept for a multi-channel swept source optical coherence tomography (OCT) system based on photonic integrated circuits (PICs). At the core of this concept is a low-loss polarization dependent path routing approach allowing for lower excess loss compared to previously shown PIC-based OCT systems, facilitating a parallelization of measurement units. As a proof of concept for the low-loss path routing, a silicon nitride PIC-based single-channel swept source OCT system operating at 840 nm was implemented and used to acquire in-vivo tomograms of a human retina. The fabrication of the PIC was done via CMOS-compatible plasma-enhanced chemical vapor deposition to allow future monolithic co-integration with photodiodes and read-out electronics. A performance analysis using the results of the implemented photonic building blocks shows a potential tenfold increase of the acquisition speed for a multi-channel system compared to an ideal lossless single-channel system with the same signal-to-noise ratio.
327 - Rui Xi , Qiaolu Chen , Qinghui Yan 2021
Topological valley photonics has emerged as a new frontier in photonics with many promising applications. Previous valley boundary transport relies on kink states at internal boundaries between two topologically distinct domains. However, recent stud ies have revealed a novel class of topological chiral edge states (CESs) at external boundaries of valley materials, which have remained elusive in photonics. Here, we propose and experimentally demonstrate the topological CESs in valley photonic metamaterials (VPMMs) by accurately tuning on-site edge potentials. Moreover, the VPMMs work at deep-subwavelength scales. Thus, the supported CESs are highly confined and self-guiding without relying on a cladding layer to prevent leakage radiation. Via direct near-field measurements, we observe the bulk bandgap, the edge dispersions, and the robust edge transport passing through sharp corners, which are hallmarks of the CESs. Our work paves a way to explore novel topological edge states in valley photonics and sheds light on robust and miniaturized photonic devices.
Topological valley kink states have become a significant research frontier with considerable intriguing applications such as robust on-chip communications and topological lasers. Unlike guided modes with adjustable widths in most conventional wavegui des, the valley kink states are usually highly confined around the domain walls and thus lack the mode width degree of freedom (DOF), posing a serious limitation to potential device applications. Here, by adding a photonic crystal (PhC) featuring a Dirac point between two valley PhCs with opposite valley-Chern numbers, we design and experimentally demonstrate topological valley-locked waveguides (TVLWs) with tunable mode widths. The photoinc TVLWs could find unique applications, such as high-energy-capacity topological channel intersections, valley-locked energy concentrators, and topological cavities with designable confinement, as verified numerically and experimentally. The TVLWs with width DOF could be beneficial to interface with the exsisting photonic waveguides and devices, and serve as a novel platform for practical use of topological lasing, field enhancement, on-chip communicaitons, and high-capacity energy transport.
Thin-film lithium niobate (LN) photonic integrated circuits (PICs) could enable ultrahigh performance in electro-optic and nonlinear optical devices. To date, realizations have been limited to chip-scale proof-of-concepts. Here we demonstrate monolit hic LN PICs fabricated on 4- and 6-inch wafers with deep ultraviolet lithography and show smooth and uniform etching, achieving 0.27 dB/cm optical propagation loss on wafer-scale. Our results show that LN PICs are fundamentally scalable and can be highly cost-effective.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا