ترغب بنشر مسار تعليمي؟ اضغط هنا

Potential of commercial SiN MPW platforms for developing mid/high-resolution integrated photonic spectrographs for astronomy

103   0   0.0 ( 0 )
 نشر من قبل Pradip Gatkine
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Integrated photonic spectrographs offer an avenue to extreme miniaturization of astronomical instruments, which would greatly benefit extremely large telescopes and future space missions. These devices first require optimization for astronomical applications, which includes design, fabrication and field-testing. Given the high costs of photonic fabrication, Multi-Project Wafer (MPW) SiN offerings, where a user purchases a portion of a wafer, provide a convenient and affordable avenue to develop this technology. In this work we study the potential of two commonly used SiN waveguide geometries by MPW foundries, i.e. square and rectangular profiles to determine how they affect the performance of mid-high resolution arrayed waveguide grating spectrometers around 1.5 $mu$m. Specifically, we present results from detailed simulations on the mode sizes, shapes, and polarization properties, and on the impact of phase errors on the throughput and cross talk as well as some laboratory results of coupling and propagation losses. From the MPW-run tolerances and our phase-error study, we estimate that an AWG with R $sim$ 10,000 can be developed with the MPW runs and even greater resolving power is achievable with more reliable, dedicated fabrication runs. Depending on the fabrication and design optimizations, it is possible to achieve throughputs $sim 60%$ using the SiN platform. Thus, we show that SiN MPW offerings are highly promising and will play a key role in integrated photonic spectrograph developments for astronomy.


قيم البحث

اقرأ أيضاً

Astrophotonics is the next-generation approach that provides the means to miniaturize near-infrared (NIR) spectrometers for upcoming large telescopes and make them more robust and inexpensive. The target requirements for our spectrograph are: a resol ving power of about 3000, wide spectral range (J and H bands), free spectral range of about 30 nm, high on-chip throughput of about 80% (-1dB) and low crosstalk (high contrast ratio) between adjacent on-chip wavelength channels of less than 1% (-20dB). A promising photonic technology to achieve these requirements is Arrayed Waveguide Gratings (AWGs). We have developed our first generation of AWG devices using a silica-on-silicon substrate with a very thin layer of silicon-nitride in the core of our waveguides. The waveguide bending losses are minimized by optimizing the geometry of the waveguides. Our first generation of AWG devices are designed for H band and have a resolving power of around 1500 and free spectral range of about 10 nm around a central wavelength of 1600 nm. The devices have a footprint of only 12 mm x 6 mm. They are broadband (1450-1650 nm), have a peak on-chip throughput of about 80% (-1 dB) and contrast ratio of about 1.5% (-18 dB). These results confirm the robustness of our design, fabrication and simulation methods. Currently, the devices are designed for Transverse Electric (TE) polarization and all the results are for TE mode. We are developing separate J- and H-band AWGs with higher resolving power, higher throughput and lower crosstalk over a wider free spectral range to make them better suited for astronomical applications.
We present an experimental study on our first generation of custom-developed arrayed waveguide gratings (AWG) on silica platform for spectroscopic applications in near-infrared astronomy. We provide a comprehensive description of the design, numerica l simulation and characterization of several AWG devices aimed at spectral resolving powers of 15,000 - 60,000 in the astronomical H-band. We evaluate the spectral characteristics of the fabricated devices in terms of insertion loss and estimated spectral resolving power and compare the results with numerical simulations. We estimate resolving powers of up to 18,900 from the output channel 3-dB transmission bandwidth. Based on the first characterization results, we select two candidate AWGs for further processing by removal of the output waveguide array and polishing the output facet to optical quality with the goal of integration as the primary diffractive element in a cross-dispersed spectrograph. We further study the imaging properties of the processed AWGs with regards to spectral resolution in direct imaging mode, geometry-related defocus aberration, and polarization sensitivity of the spectral image. We identify phase error control, birefringence control, and aberration suppression as the three key areas of future research and development in the field of high-resolution AWG-based spectroscopy in astronomy.
The field of optical metrology with its high precision position, rotation and wavefront sensors represents the basis for lithography and high resolution microscopy. However, the on-chip integration - a task highly relevant for future nanotechnologica l devices - necessitates the reduction of the spatial footprint of sensing schemes by the deployment of novel concepts. A promising route towards this goal is predicated on the controllable directional emission of the fundamentally smallest emitters of light, i.e. dipoles, as an indicator. Here we realize an integrated displacement sensor based on the directional emission of Huygens dipoles excited in an individual dipolar antenna. The position of the antenna relative to the excitation field determines its directional coupling into a six-way crossing of photonic crystal waveguides. In our experimental study supported by theoretical calculations, we demonstrate the first prototype of an integrated displacement sensor with a standard deviation of the position accuracy below $lambda$/300 at room temperature and ambient conditions.
The reference design for the next-generation cosmic microwave background (CMB) experiment, CMB-S4, relies on large arrays of transition edge sensor (TES) bolometers coupled to Superconducting Quantum Interference Device (SQUID)-based readout systems. Mapping the CMB to near cosmic variance limits will enable the search for signatures of inflation and constrain dark energy and neutrino physics. AlMn TESes provide simple film manufacturing and highly uniform arrays over large areas to meet the requirements of the CMB-S4 experiment. TES parameters such as critical temperature and normal resistance must be tuned to experiment specifications and can be varied based on geometry and steps in the fabrication process such as deposition layering, geometry, and baking time and temperature. Using four-terminal sensing, we measured $T_C$ and $R_N$ of AlMn 2000 ppm films and devices of varying thicknesses fabricated at Argonne National Laboratory to motivate device geometries and fabrication processes to tune $T_C$ to 150-200 mK and $R_N$ to $sim$10 mOhms. Measurements of IV curves and time constants for the resulting devices of varying leg length were made using time-division SQUID multiplexing, and determined $T_C$, $G$, $k$, $f_{3db}$, and $R_N$. We present the results of these tests along with the geometries and fabrication steps used to tune the device parameters to the desired limits.
86 - D. Guberman 2017
With the development of the Imaging Atmospheric Cherenkov Technique (IACT), Gamma-ray astronomy has become one of the most interesting and productive fields of astrophysics. Current IACT telescope arrays (MAGIC, H.E.S.S, VERITAS) use photomultiplier tubes (PMTs) to detect the optical/near-UV Cherenkov radiation emitted due to the interaction of gamma rays with the atmosphere. For the next generation of IACT experiments, the possibility of replacing the PMTs with Silicon photomultipliers (SiPMs) is being studied. Among the main drawbacks of SiPMs are their limited active area (leading to an increase in the cost and complexity of the camera readout) and their sensitivity to unwanted wavelengths. Here we propose a novel method to build a relatively low-cost pixel consisting of a SiPM attached to a PMMA disc doped with a wavelength shifter. This pixel collects light over a much larger area than a single standard SiPM and improves sensitivity to near-UV light while simultaneously rejecting background. We describe the design of a detector that could also have applications in other fields where detection area and cost are crucial. We present results of simulations and laboratory measurements of a pixel prototype and from field tests performed with a 7-pixel cluster installed in a MAGIC telescope camera.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا