ﻻ يوجد ملخص باللغة العربية
We derive boundary conditions and estimates based on the energy and entropy analysis of systems of the nonlinear shallow water equations in two spatial dimensions. It is shown that the energy method provides more details, but is fully consistent with the entropy analysis. The details brought forward by the nonlinear energy analysis allow us to pinpoint where the difference between the linear and nonlinear analysis originate. We find that the result from the linear analysis does not necessarily hold in the nonlinear case. The nonlinear analysis leads in general to a different minimal number of boundary conditions compared with the linear analysis. In particular, and contrary to the linear case, the magnitude of the flow does not influence the number of required boundary conditions.
In this paper we analyze the stability of equilibrium manifolds of hyperbolic shallow water moment equations. Shallow water moment equations describe shallow flows for complex velocity profiles which vary in vertical direction and the models can be s
The regularisation of nonlinear hyperbolic conservation laws has been a problem of great importance for achieving uniqueness of weak solutions and also for accurate numerical simulations. In a recent work, the first two authors proposed a so-called H
We derive optimal-order homogenization rates for random nonlinear elliptic PDEs with monotone nonlinearity in the uniformly elliptic case. More precisely, for a random monotone operator on $mathbb{R}^d$ with stationary law (i.e. spatially homogeneous
We develop an adjoint approach for recovering the topographical function included in the source term of one-dimensional hyperbolic balance laws. We focus on a specific system, namely the shallow water equations, in an effort to recover the riverbed t
In this article, exact traveling wave solutions of a Wick-type stochastic nonlinear Schr{o}dinger equation and of a Wick-type stochastic fractional Regularized Long Wave-Burgers (RLW-Burgers) equation have been obtained by using an improved computati