ﻻ يوجد ملخص باللغة العربية
A common problem with most zero and few-shot learning approaches is they suffer from bias towards seen classes resulting in sub-optimal performance. Existing efforts aim to utilize unlabeled images from unseen classes (i.e transductive zero-shot) during training to enable generalization. However, this limits their use in practical scenarios where data from target unseen classes is unavailable or infeasible to collect. In this work, we present a practical setting of inductive zero and few-shot learning, where unlabeled images from other out-of-data classes, that do not belong to seen or unseen categories, can be used to improve generalization in any-shot learning. We leverage a formulation based on product-of-experts and introduce a new AUD module that enables us to use unlabeled samples from out-of-data classes which are usually easily available and practically entail no annotation cost. In addition, we also demonstrate the applicability of our model to address a more practical and challenging, Generalized Zero-shot under a limited supervision setting, where even base seen classes do not have sufficient annotated samples.
Generalized zero-shot learning (GZSL) aims to recognize objects from both seen and unseen classes, when only the labeled examples from seen classes are provided. Recent feature generation methods learn a generative model that can synthesize the missi
Visual cognition of primates is superior to that of artificial neural networks in its ability to envision a visual object, even a newly-introduced one, in different attributes including pose, position, color, texture, etc. To aid neural networks to e
Generalized zero-shot learning (GZSL) has achieved significant progress, with many efforts dedicated to overcoming the problems of visual-semantic domain gap and seen-unseen bias. However, most existing methods directly use feature extraction models
Graph convolutional neural networks have recently shown great potential for the task of zero-shot learning. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new
Suffering from the semantic insufficiency and domain-shift problems, most of existing state-of-the-art methods fail to achieve satisfactory results for Zero-Shot Learning (ZSL). In order to alleviate these problems, we propose a novel generative ZSL