ترغب بنشر مسار تعليمي؟ اضغط هنا

Kondo-lattice-mediated interactions in flat band systems

83   0   0.0 ( 0 )
 نشر من قبل Pramod Kumar
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electronic flat bands represent a paradigmatic platform to realize strongly correlated matter due to their associated divergent density of states. In common instances, including electron-electron interactions leads to magnetic instabilities for repulsive interactions and superconductivity for attractive interactions. Nevertheless, interactions of Kondo nature in flat band systems have remained relatively unexplored. Here we address the emergence of interacting states mediated by Kondo lattice coupled to a flat band system. Combining dynamical mean-field theory and tensor networks methods to solve flat band Kondo lattice models in one and two dimensions, we show the emergence of a robust underscreened regime leading to a magnetically ordered state in the flat band. Our results put forward flat band Kondo lattice models as a platform to explore the genuine interplay between flat band physics and many-body Kondo screening.



قيم البحث

اقرأ أيضاً

Existing Quantum Monte Carlo studies have investigated the properties of fermions on a Lieb (CuO$_2$) lattice interacting with an on-site, or near-neighbor electron-electron coupling. Attention has focused on the interplay of such interactions with t he macroscopic degeneracy of local zero energy modes, from which Bloch states can be formed to produce a flat band in which energy is independent of momentum. The resulting high density of states, in combination with the Stoner criterion, suggests that there should be pronounced instabilities to ordered phases. Indeed, a theorem by Lieb rigorously establishes the existence of ferrimagnetic order. Here we study the charge density wave phases induced by electron-phonon coupling on the Lieb lattice, as opposed to previous work on electron-electron interactions. Our key result is the demonstration of charge density wave (CDW) phases at one-third and two-thirds fillings, characterized by long-range density density correlations between doubly occupied sites on the minority or majority sublattice, and an accompanying gap. We also compute the transition temperature to the ordered phase as a function of the electron-phonon coupling.
The physics of strongly correlated quantum particles within a flat band was originally explored as a route to itinerant ferromagnetism and, indeed, a celebrated theorem by Lieb rigorously establishes that the ground state of the repulsive Hubbard mod el on a bipartite lattice with unequal number of sites in each sublattice must have nonzero spin S at half-filling. Recently, there has been interest in Lieb geometries due to the possibility of novel topological insulator, nematic, and Bose-Einstein condensed (BEC) phases. In this paper, we extend the understanding of the attractive Hubbard model on the Lieb lattice by using Determinant Quantum Monte Carlo to study real space charge and pair correlation functions not addressed by the Lieb theorems.
We use unbiased numerical methods to study the onset of pair superfluidity in a system that displays flat bands in the noninteracting regime. This is achieved by using a known example of flat band systems, namely the Creutz lattice, where we investig ate the role of local attractive interactions in the $U < 0$ Hubbard model. Going beyond the standard approach used in these systems where weak interactions are considered, we map the superfluid behavior for a wide range of interaction strengths and exhibit a crossover between BCS and tightly bound bosonic fermion pairs. We further contrast these results with a standard two-leg fermionic ladder, showing that the pair correlations, although displaying algebraic decay in both cases, are longer ranged in the Creutz lattice, signifying the robustness of pairing in this system.
Localized magnons states, due to flat bands in the spectrum, is an intensely studied phenomenon and can be found in many frustrated magnets of different spatial dimensionality. The presence of Dzyaloshinskii-Moriya (DM) interactions may change radica lly the behavior in such systems. In this context, we study a paradigmatic example of a one-dimensional frustrated antiferromagnet, the sawtooth chain in the presence of DM interactions. Using both path integrals methods and numerical Density Matrix Renormalization Group, we revisit the physics of localized magnons and determine the consequences of the DM interaction on the ground state. We have studied the spin current behavior, finding three different regimes. First, a Luttinger-liquid regime where the spin current shows a step behavior as a function of parameter $D$, at a low magnetic field. Increasing the magnetic field, the system is in the Meissner phase at the $m = 1/2$ plateau, where the spin current is proportional to the DM parameter. Finally, further increasing the magnetic field and for finite $D$ there is a small stiffness regime where the spin current shows, at fixed magnetization, a jump to large values at $D = 0$, a phenomenon also due to the flat band.
In a Kondo lattice, the spin exchange coupling between a local spin and the conduction electrons acquires nonlocal contributions due to conduction electron scattering from surrounding local spins and the subsequent RKKY interaction. It leads to a hit herto unrecognized interference of Kondo screening and the RKKY interaction beyond the Doniach scenario. We develop a renormalization group theory for the RKKY-modified Kondo vertex. The Kondo temperature, $T_K(y)$, is suppressed in a universal way, controlled by the antiferromagnetic RKKY coupling parameter $y$. Complete spin screening ceases to exist beyond a critical RKKY strength $y_c$ even in the absence of magnetic ordering. At this breakdown point, $T_K(y)$ remains nonzero and is not defined for larger RKKY couplings, $y>y_c$. The results are in quantitative agreement with STM spectroscopy experiments on tunable two-impurity Kondo systems. The possible implications for quantum critical scenarios in heavy-fermion systems are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا