ﻻ يوجد ملخص باللغة العربية
The physics of strongly correlated quantum particles within a flat band was originally explored as a route to itinerant ferromagnetism and, indeed, a celebrated theorem by Lieb rigorously establishes that the ground state of the repulsive Hubbard model on a bipartite lattice with unequal number of sites in each sublattice must have nonzero spin S at half-filling. Recently, there has been interest in Lieb geometries due to the possibility of novel topological insulator, nematic, and Bose-Einstein condensed (BEC) phases. In this paper, we extend the understanding of the attractive Hubbard model on the Lieb lattice by using Determinant Quantum Monte Carlo to study real space charge and pair correlation functions not addressed by the Lieb theorems.
Existing Quantum Monte Carlo studies have investigated the properties of fermions on a Lieb (CuO$_2$) lattice interacting with an on-site, or near-neighbor electron-electron coupling. Attention has focused on the interplay of such interactions with t
Electronic flat bands represent a paradigmatic platform to realize strongly correlated matter due to their associated divergent density of states. In common instances, including electron-electron interactions leads to magnetic instabilities for repul
It is known that a system which exhibits a half filled lowest flat band and the localized one-particle Wannier states on the flat band satisfy the connectivity conditions, is always ferromagnetic. Without the connectivity conditions on the flat band,
We discuss twisted bilayer graphene (TBG) based on a theorem of flat band ferromagnetism put forward by Mielke and Tasaki. According to this theorem, ferromagnetism occurs if the single particle density matrix of the flat band states is irreducible a
We analyze the electronic properties of interacting crystal field split three band systems. Using a rotationally invariant slave boson approach we analyze the behavior of the electronic mass renormalization as a function of the intralevel repulsion $