ترغب بنشر مسار تعليمي؟ اضغط هنا

Kondo Destruction in RKKY-Coupled Kondo Lattice and Multi-Impurity Systems

63   0   0.0 ( 0 )
 نشر من قبل Johann Kroha
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a Kondo lattice, the spin exchange coupling between a local spin and the conduction electrons acquires nonlocal contributions due to conduction electron scattering from surrounding local spins and the subsequent RKKY interaction. It leads to a hitherto unrecognized interference of Kondo screening and the RKKY interaction beyond the Doniach scenario. We develop a renormalization group theory for the RKKY-modified Kondo vertex. The Kondo temperature, $T_K(y)$, is suppressed in a universal way, controlled by the antiferromagnetic RKKY coupling parameter $y$. Complete spin screening ceases to exist beyond a critical RKKY strength $y_c$ even in the absence of magnetic ordering. At this breakdown point, $T_K(y)$ remains nonzero and is not defined for larger RKKY couplings, $y>y_c$. The results are in quantitative agreement with STM spectroscopy experiments on tunable two-impurity Kondo systems. The possible implications for quantum critical scenarios in heavy-fermion systems are discussed.

قيم البحث

اقرأ أيضاً

The competition between the indirect exchange interaction (IEC) of magnetic impurities in metals and the Kondo effect gives rise to a rich quantum phase diagram, the Doniach Diagram. In disordered metals, both the Kondo temperature and the IEC are wi dely distributed due to the scattering of the conduction electrons from the impurity potential. Therefore, it is a question of fundamental importance, how this Doniach diagram is modified by the disorder, and if one can still identify separate phases. Recently, it has been investigated the effect of Ruderman-Kittel-Kasuya-Yosida (RKKY) correlations on the Kondo effect of two magnetic impurities, renormalizing the Kondo interaction based on the Bethe-Salpeter equation and performing the poor mens renormalization group (RG) analysis with the RKKY-renormalized Kondo coupling. In the present study, we extend this theoretical framework, allowing for different Kondo temperatures of two RKKY-coupled magnetic impurities due to different local exchange couplings and density of states. As a result, we find that the smaller one of the two Kondo temperatures is suppressed more strongly by the RKKY interaction, thereby enhancing their initial inequality. In order to find out if this relevance of inequalities between Kondo temperatures modifies the distribution of the Kondo temperature in a system of a finite density of randomly distributed magnetic impurities, we present an extension of the RKKY coupled Kondo RG equations. We discuss the implication of these results for the interplay between Kondo coupling and RKKY interaction in disordered electron systems and the Doniach diagram in disordered electron systems.
In the first step, experiments on a single cerium or ytterbium Kondo impurity reveal the importance of the Kondo temperature by comparison to other type of couplings like the hyperfine interaction, the crystal field and the intersite coupling. The ex tension to a lattice is discussed. Emphasis is given on the fact that the occupation number $n_f$ of the trivalent configuration may be the implicit key variable even for the Kondo lattice. Three $(P, H, T)$ phase diagrams are discussed: CeRu$_2$Si$_2$, CeRhIn$_5$ and SmS.
The emerging and screening of local magnetic moments in solids has been investigated for more than 60 years. Local vacancies as in graphene or in Heavy Fermions can induce decoupled bound states that lead to the formation of local moments. In this pa per, we address the puzzling question how these local moments can be screened and what determines the additionally emerging low temperature scale. We review the initial problem for half-filled conduction bands from two complementary perspectives: By a single-particle supercell analysis in the uncorrelated limit and by the Lieb-Mathis theorem for systems with a large Coulomb interaction $U$. We proof that the stable local moments are subject to screening by three different mechanisms. Firstly the local moments are delocalized by a finite $U$ beyond the single-particle bound state. We find a Kosterlitz-Thouless type transition governed by an exponentially suppressed low energy scale of a counterintuitive Kondo form with $J_{rm eff} propto U^n$ for small $U$, where $n>1$ depends on the precise model. Secondly, we show that away from half-filling the local moment phase becomes unstable and is replaced by two types of singlet phases that are adiabatically connected. At a critical value for the band center, the physics is governed by an exponentially suppressed Kondo scale approaching the strong coupling phase that is replaced by an singlet formation via antiferromagnetic RKKY interaction for large deviation from the critical values. Thirdly, we show that the local magnetic moment can be screened by a Kondo hole orbital at finite energy, even though the orbital occupation is negligible: An additional low energy scale emerges below which the localized moment is quenched. Similarities to the experimental findings in Ce$_{1-x}$La$_x$Pd$_3$ are pointed out.
We show that the paradigmatic Ruderman-Kittel-Kasuya-Yosida (RKKY) description of two local magnetic moments coupled to propagating electrons breaks down in helical Luttinger Liquids when the electron interaction is stronger than some critical value. In this novel regime, the Kondo effect overwhelms the RKKY interaction over all macroscopic inter-impurity distances. This phenomenon is a direct consequence of the helicity (realized, for instance, at edges of a time-reversal invariant topological insulator) and does not take place in usual (non-helical) Luttinger Liquids.
We apply our recently developed, selfconsistent renormalization group (RG) method to STM spectra of a two-impurity Kondo system consisting of two cobalt atoms connected by a one-dimensional Cu chain on a Cu surface. This RG method was developed to de scribe local spin screening in multi-impurity Kondo systems in presence of the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. Using the RKKY interaction of a one-dimensional chain, we explain the experimentally observed suppression and oscillation of the Kondo temperature, $T_K(y)$, as a function of the length of the chain and the corresponding RKKY interaction parameter $y$, regardless of the RKKY coupling being ferromagnetic or antiferromagnetic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا