ﻻ يوجد ملخص باللغة العربية
In this paper, we present a hybrid deep learning framework named CTNet which combines convolutional neural network and transformer together for the detection of COVID-19 via 3D chest CT images. It consists of a CNN feature extractor module with SE attention to extract sufficient features from CT scans, together with a transformer model to model the discriminative features of the 3D CT scans. Compared to previous works, CTNet provides an effective and efficient method to perform COVID-19 diagnosis via 3D CT scans with data resampling strategy. Advanced results on a large and public benchmarks, COV19-CT-DB database was achieved by the proposed CTNet, over the state-of-the-art baseline approachproposed together with the dataset.
In this paper, a 3D-RegNet-based neural network is proposed for diagnosing the physical condition of patients with coronavirus (Covid-19) infection. In the application of clinical medicine, lung CT images are utilized by practitioners to determine wh
The health and socioeconomic difficulties caused by the COVID-19 pandemic continues to cause enormous tensions around the world. In particular, this extraordinary surge in the number of cases has put considerable strain on health care systems around
The current pandemic, caused by the outbreak of a novel coronavirus (COVID-19) in December 2019, has led to a global emergency that has significantly impacted economies, healthcare systems and personal wellbeing all around the world. Controlling the
The novel corona-virus disease (COVID-19) pandemic has caused a major outbreak in more than 200 countries around the world, leading to a severe impact on the health and life of many people globally. As of Aug 25th of 2020, more than 20 million people
An outbreak of a novel coronavirus disease (i.e., COVID-19) has been recorded in Wuhan, China since late December 2019, which subsequently became pandemic around the world. Although COVID-19 is an acutely treated disease, it can also be fatal with a