ﻻ يوجد ملخص باللغة العربية
This paper presents a classification of 7-dimensional real and complex indecomposable solvable Lie algebras having some 5-dimensional nilradicals. Afterwards, we combine our results with those of Rubin and Winternitz (1993), Ndogmo and Winternitz (1994), Snobl and Winternitz (2005, 2009), Snobl and Karasek (2010) to obtain a complete classification of 7-dimensional real and complex indecomposable solvable Lie algebras with 5-dimensional nilradicals. In association with Gong (1998), Parry (2007), Hindeleh and Thompson (2008), we achieve a classification of 7-dimensional real and complex indecomposable solvable Lie algebras.
In this paper solvable Leibniz algebras whose nilradical is quasi-filiform Lie algebra of maximum length, are classified. The rigidity of such Leibniz algebras with two-dimensional complemented space to nilradical is proved.
In this paper solvable Leibniz algebras with naturally graded non-Lie $p$-filiform $(n-pgeq4)$ nilradical and with one-dimensional complemented space of nilradical are described. Moreover, solvable Leibniz algebras with abelian nilradical and extrema
This paper concerns the problem of classifying finite-dimensional real solvable Lie algebras whose derived algebras are of codimension 1 or 2. On the one hand, we present an effective method to classify all $(n+1)$-dimensional real solvable Lie algeb
In this paper the description of solvable Lie algebras with triangular nilradicals is extended to Leibniz algebras. It is proven that the matrices of the left and right operators on elements of Leibniz algebra have upper triangular forms. We establis
We extend the classification of solvable Lie algebras with abelian nilradicals to classify solvable Leibniz algebras which are one dimensional extensions of an abelian nilradicals.