ﻻ يوجد ملخص باللغة العربية
In this paper the description of solvable Lie algebras with triangular nilradicals is extended to Leibniz algebras. It is proven that the matrices of the left and right operators on elements of Leibniz algebra have upper triangular forms. We establish that solvable Leibniz algebra of a maximal possible dimension with a given triangular nilradical is a Lie algebra. Furthermore, solvable Leibniz algebras with triangular nilradicals of low dimensions are classified.
We extend the classification of solvable Lie algebras with abelian nilradicals to classify solvable Leibniz algebras which are one dimensional extensions of an abelian nilradicals.
A classification exists for Lie algebras whose nilradical is the triangular Lie algebra $T(n)$. We extend this result to a classification of all solvable Leibniz algebras with nilradical $T(n)$. As an example we show the complete classification of all Leibniz algebras whose nilradical is $T(4)$.
In this paper solvable Leibniz algebras whose nilradical is quasi-filiform Lie algebra of maximum length, are classified. The rigidity of such Leibniz algebras with two-dimensional complemented space to nilradical is proved.
In this paper solvable Leibniz algebras with naturally graded non-Lie $p$-filiform $(n-pgeq4)$ nilradical and with one-dimensional complemented space of nilradical are described. Moreover, solvable Leibniz algebras with abelian nilradical and extrema
In this paper we classify solvable Leibniz algebras whose nilradical is a null-filiform algebra. We extend the obtained classification to the case when the solvable Leibniz algebra is decomposed as a direct sum of its nilradical, which is a direct su