ﻻ يوجد ملخص باللغة العربية
This paper concerns the problem of classifying finite-dimensional real solvable Lie algebras whose derived algebras are of codimension 1 or 2. On the one hand, we present an effective method to classify all $(n+1)$-dimensional real solvable Lie algebras having 1-codimensional derived algebras provided that a full classification of $n$-dimensional nilpotent Lie algebras is given. On the other hand, the problem of classifying all $(n+2)$-dimensional real solvable Lie algebras having 2-codimensional derived algebras is proved to be wild. In this case, we provide a method to classify a subclass of the considered Lie algebras which are extended from their derived algebras by a pair of derivations containing at least one inner derivation.
This paper presents a classification of 7-dimensional real and complex indecomposable solvable Lie algebras having some 5-dimensional nilradicals. Afterwards, we combine our results with those of Rubin and Winternitz (1993), Ndogmo and Winternitz (19
We show that in the class of solvable Lie algebras there exist algebras which admit local derivations which are not ordinary derivation and also algebras for which every local derivation is a derivation. We found necessary and sufficient conditions u
In this paper solvable Leibniz algebras whose nilradical is quasi-filiform Lie algebra of maximum length, are classified. The rigidity of such Leibniz algebras with two-dimensional complemented space to nilradical is proved.
We prove that free pre-Lie algebras, when considered as Lie algebras, are free. Working in the category of S-modules, we define a natural filtration on the space of generators. We also relate the symmetric group action on generators with the structure of the anticyclic PreLie operad.
Based on the differential graded Lie algebra controlling deformations of an $n$-Lie algebra with a representation (called an n-LieRep pair), we construct a Lie n-algebra, whose Maurer-Cartan elements characterize relative Rota-Baxter operators on n-L